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Abstract

Ragweed allergy is one of the primary causes of seasonal allergies in Europe and its prevalence is expected to rise. The 
leaf beetle Ophraella communa, recently and accidentally established in N-Italy and S-Switzerland, represents a promising 
approach to control ragweed, but negative side effects should be excluded before its use. Since biotic and abiotic stresses 
are known to influence the allergenicity of pollen, we set out to assess the effect of sub-lethal defoliation by O. communa on 
the quantity and quality of ragweed pollen. Seventeen sister pairs (including six clones) of ragweed plants were grown in 
controlled conditions. One of each pair was exposed to O. communa as soon as the plant started to produce reproductive 
structures. After 10 weeks of exposure, plant traits were measured as a proxy for pollen quantity. Pollen quality was assessed 
by measuring its viability and allergenicity. Generally, plants produced very few male flowers and little amount of pollen. 
Damage by the beetle was severe with most of the leaf tissue removed, but no treatment effect was found on any of the 
quantitative and qualitative traits assessed. In conclusion, O. communa did not increase the amount or allergenicity of 
ragweed pollen grains in our experimental conditions.
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Introduction

Ambrosia artemisiifolia L. (common ragweed), a 

North America native plant, has been accidentally 

introduced to Europe where it has naturalized since 

the 19th century. It represents an increasingly seri-

ous threat to both environment and human health. 

The high ability of adaptation, reproduction, and 

dispersal make this plant a good competitor in dis-

turbed areas affecting the existing plant diversity 

(Fenesi & Botta-Dukát 2012). Ambrosia artemisiifolia 

also has become a major weed in European agricul-

ture, especially in spring-sown crops such as sun-

flower, maize, sugar beet, and soybean (Komives et 

al. 2006). In addition, A. artemiisifolia produces large 

quantities of highly allergenic pollen representing 

one of the main causes of pollinosis in many regions 

of the word (Smith et al. 2013). In Europe, given the 

high prevalence of sensitized people, social and eco-

nomic impacts are significant (D’Amato et al. 2015). 

For instance, the annual health costs related to rag-

weed allergy have been estimated at € 110 million in 

Hungary, € 88 million in Austria (Gerber et al. 2011, 

and references therein) and more than € 1.7 million 

in a 90 km2 area in North Italy (http://www.aslmi1.

mi.it/), areas all highly invaded by A. artemiisifolia.

Common ragweed is continuing to expand across 

Europe, and future changes in climate and land use 

are expected to facilitate further spread to currently 

unsuitable areas (Essl et al. 2015). These changes 

can also augment the production of pollen (Ziska & 

Caulfield 2000; Singer et al. 2005). Hamaoui-Laguel 

et al. (2015) predicted a fourfold increase in airborne 

concentration of common ragweed pollen in Europe 

by 2050. This great increase in pollen concentration 

in the atmosphere along with the presence of pol-

lutants, which can increase the allergenic potential 

of pollen (Zhao et al. 2016), constitutes a further 

alarming threat to human health.

Current management of A. artemisiifolia is mainly 

based on the use of broad-spectrum herbicides and 

mowing (Bohren et al. 2006; Patracchini et al. 2011), 

the latter of which has been enforcedly adopted by 

several local health authorities and municipalities 

to reduce pollen production, but effects are limited 

so far (Müller-Schärer et al. 2014). Another prom-

ising approach is classical biological control, where  
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paper bags at room temperature. In Spring 2015 they 

were cold-stratified in the dark at 4°C for 3 months, 

and then planted in a tray. Single  seedlings of 

20 mm long were transferred to plastic pots (14 cm 

 diameter × 14 cm height) and grown in controlled 

condition (temperature: 25°C; 10 h dark/14 h light, 

150 μmol m−2s−1; humidity: 65%).

Some of the obtained plants were vegetatively 

propagated to produce clonal individuals. To this 

purpose plant shoots were cut into nodal segments 

with one leaf and one lateral bud. The nodal seg-

ments were then cultivated in tubes containing 5 mL 

of MS medium supplied with Gambourg (B5) vita-

mins and supplemented with 4,5 μM 6-benzylamin-

opurine (BAP) to induce shoots regeneration. After 

30 days of cultivation, microshoots > 2–3 cm with 

three or more leaves were excised and cultured on 

MS medium plus Vitamin B5 containing 0,5  μM 

indole-3-acetic acid (IAA) for rooting and growth. 

Finally, rooted plants were transplanted to pots and 

growth along with the plant from seeds in controlled 

conditions as described above.

Ophraella communa

Egg batches and males of Ophraella communa were 

collected from A. artemisiifolia in Magnagno, ca. 

40 km from Milano, on two occasions in July 2015. 

They were kept in aerated pots, provided with ample 

fresh leaves of A. artemisiifolia in the same room as 

the plants for a maximum of 10 days.

Experimental procedure

Plants were weekly checked for the presence of floral 

buds. Once the first buds appeared in July 2015, a 

total of 17 pairs of plants were formed, by choosing 

11 pairs of sister plants (all from different mother 

plants) and 6 pairs of relative clones (from 6 indi-

vidual plants) that were as uniformly in size as pos-

sible. Of each pair, one was randomly assigned to 

the beetle treatment, and the other served as control. 

Individual plants were subjected to their assigned 

treatment when their floral buds appeared, and all 

treatments started within a three-week period. The 

maximum height and width of the plants were meas-

ured as an indication of size. Plants were then caged 

with partially transparent insect-free white tissue, 

from the pot until just below the first inflorescence, 

where the tissue was carefully attached to a sponge 

that surrounded the stem of the plant to protect 

it (Figure 1(A)). Plants assigned to the Ophraella 

treatment received a centrifuge tube near their stem 

before the tissue was closed, and which contained six 

male beetles and three unhatched egg batches each 

containing a minimum of 10 eggs on pieces of leaves, 

natural enemies from the native range are introduced 

to control the plant in the invaded range (Müller-

Schärer & Schaffner 2008). This method has proven 

to be permanent, environmentally friendly and 

a cost-effective control of several invasive plants 

(Seastedt 2015). In 2013, the leaf beetle Ophraella 
communa LaSage (Coleoptera: Chrysomelidae), 

already used as a biocontrol agent of ragweed in 

China (Zhou et al. 2011) and also effective against 

ragweed in Australia (Palmer et al. 2010), was unex-

pectedly found to have established in Northwestern 

Italy and southern Switzerland (Boriani et al. 2013; 

Müller-Schärer et al. 2014). The insect preferentially 

feeds on A. artemisiifolia, and severe defoliation can 

result in a reduction of flower and seed production, 

or can even kill the plant before flowering (Zhou et 

al. 2014). During the summer 2013 and 2014, con-

centrations of airborne ragweed pollen were signifi-

cantly lower near the center of the colonized Italian 

area than what would be expected based on meteor-

ological data of the region (Bonini et al. 2015). This 

strongly indicates a huge effect of the insect, and a 

direct benefit for human health. Nevertheless, before 

deciding on actively spreading this insect for ragweed 

control, potential concomitant negative impacts for 

human health, agriculture and the environment need 

to be carefully studied. Regarding human health, it 

is yet unclear how sublethal damage by O. communa 

will affect the quantity and quality of ragweed pol-

len produced. Non-lethal attack by aphids under 

controlled conditions reduced not only the quantity 

but also the viability and protein quantity of A. arte-
misiifolia pollen (Basky & Magyar 2009). However, 

a body of literature shows opposite effects, with sev-

eral types of biotic and abiotic environmental stress 

increasing the severity and frequency of respiratory 

allergic diseases (Singer et al. 2005; Smith et al. 

2013; Sinha et al. 2014; Zhao et al. 2015). Conse-

quently, it cannot be excluded that non-lethal attack 

levels by O. communa may result in more aggressive 

(more allergenic) pollen.

In this paper, we report results of a laboratory 

experiment investigating the impact of defoliation 

by O. communa during flowering time on the quan-

tity, viability, and allergenicity of pollen produced by 

common ragweed plants.

Materials and methods

Plant material

Both plants grown from seeds of single mother 

plants and clonal plants were used to test the effect 

of O.  communa on ragweed. Seeds were collected 

from a ragweed population grown in the Botticino 

extraction basin (Brescia, Italy), an area not invaded 

by O.  communa, in October 2009, and stored in 
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collected 1–10 days before. In two cases where no 

beetles or larvae were seen after a week, the same 

amount of beetles was added again. In addition, we 

applied a cutting treatment to the uncaged leaves 

of all Ophraella-treated plants to simulate Ophraella 

feeding of those leaves that could not be accessed by 

Ophraella. Three weeks after the start of the treat-

ment, 90% of the uncaged leaf tissue was cut manu-

ally in such a manner that only the veins remained, 

and this was repeated biweekly. When the caged part 

of the plant had been completely defoliated by the 

beetles (usually after four weeks), all remaining bee-

tles were removed by an exhauster. Control plants 

were caged similarly but did not receive any beetles 

nor manual cutting. Mature pollen of each plant was 

recovered in transparent collectors, by covering 1–3 

male inflorescences with a modified ARACON sys-

tem (Kanter et al. 2013; Figure 1(B)) until 10 weeks 

after the start of the treatments.

Plant traits

We collected data on plant performance that are 

known to be well related with the amount of pol-

len produced (Fumanal et al. 2007; Šauliene et al. 

2012). Plant height (cm), measured from the ground 

to the maximum growing point of the main branch, 

and lateral spread (cm), measured as the maximum 

diameter of the plant, were recorded just before the 

cage was installed and after 10 weeks of treatment. 

In addition, the following plant reproductive traits 

were recorded per plant: the number of racemes (the 

spikes with male flower heads), male flower heads, 

and female flowers, as well as the weight of the pollen 

collected.

Pollen viability

Membrane integrity and viability of pollen grains 

were estimated using the fluorescein diacetate (FDA) 

method (Heslop-Harrison & Heslop-Harrison 

1970). This is based on the incubation of 0.1 mg of 

pollen with 1 ml of Mannitolo–FDA solution (0.3 M 

Mannitol and 0.01  mg  mL−1 FDA) for 15  min in 

darkness at room temperature. The percentage of 

viable grains was estimated for single raceme by 

counting in a Bürker chamber using a standard fluo-

rescence microscope (400× magnification) equipped 

with epi-illumination (Axioplan, Zeiss, Germany), 

100 W halogen bulb, band pass 450–490 nm (blue) 

excitation filter, 510 nm chromatic bean splitter, and 

520 nm long-pass filter. A pollen grain was consid-

ered as viable, when it emitted green fluorescence 

under blue excitation. Three independent experi-

ments for each raceme were performed.

Pollen allergenicity

Slot blot technique was applied to assess the whole 

allergenicity of pollen collected from the different 

racemes. Soluble protein extracts were prepared 

according to Aina et al. (2010). Equal volumes of 

these extracts were bound to nitrocellulose mem-

brane and first stained with Ponceau S staining solu-

tion [0.1% (w/v) Ponceau S in 5% (v/v) acetic acid] 

to assess the amount of proteins loaded in each well. 

Membranes were then used to evaluate the immu-

noreactivity of the different pollen extracts to a pool 

of sera from ragweed allergic patients, previously 

selected (Asero et al. 2014). Image analysis was 

applied to quantify reactivity signals. The integrated 

optical density (IOD) of immunoreactive spots with 

respect to the IOD of standard (Allergon®) was 

measured. At least three different samples for each 

racemes were analyzed.

Statistical analysis

Statistical analyses were performed using the 

GraphPad Prism software for Windows (version 4.0 

Figure 1. (A) Control and exposed plants caged with partially transparent insect-free white tissue. (B, C) Male inflorescences covered with 
transparent collectors (modified ARACON system) used to recover mature pollen.

3

ht
tp
://
do
c.
re
ro
.c
h



weight per plant) were log-transformed or analyzed 

by Kruskal-Wallis non-parametric procedure.

Results

Ragweed clones and plants from seeds were exposed 

to the beetle since the very beginning of their flower 

development for 10  weeks, whereas a sister plant/

clone remained untreated. After this period, plant 

traits as a proxy for pollen production, along with 

the pollen viability and allergenicity were measured.

Ophraella feeding both by adults and larvae caused 

complete defoliation in the treatment cages and all 

but three plants (all from the Ophraella treatment) 

survived. In addition, we observed some damage by 

thrips on dried leaves on most of the treated and con-

trol plants. Remarkably, all plants produced predom-

inantly female flowers, and only few male flowers. 

Half of all plants produced racemes, and sufficient 

amounts of pollen for quantitative analyses were col-

lected from 6 controls (including two clones) and 5 

Ophraella-treated plants (including 1 clone identical 

to one of the two control clones) before the end of 

the experiment. No effect of the Ophraella treatment 

was found on any of the plant traits measured at the 

end of the experiment (Table I). Also the clone pairs 

did not show any statistical difference (p  >  0.05). 

Pollen viability determined by FDA staining (Figure 

2(A)) was about 50% in both exposed and control 

plants (Figure 2(B)), and no effect of the beetle was 

found.

Total pollen allergenicity was assessed by slot blot 

technique. Figure 3(A) shows a representative mem-

brane after immunodetection with a pool of sera 

from selected ragweed allergic patients. Image analy-

sis was applied to quantify immunochemical signals: 

the IOD of immunoreactive spots with respect to the 

IOD of standard (sample IOD/standard IOD) was 

measured. On average, the reactivity signal of pollen 

samples from plants exposed to O. communa ranged 

from 0.97 to 1.04 whereas that of control plants 

ranged from 1.00 to 1.04 (relative units; Figure 

3(B)). The mean values between treated and control 

plants were not statistically different (p > 0.05), indi-

cating no effect of O. communa.

Discussion

Pollen allergenicity is widely recognized as a major 

determinant of health effects for sensitized patients, 

in addition to temporal and spatial allergen expo-

sure (Cecchi et al. 2010). The allergenic potency of 

pollen, which is species specific, can be modulated 

by environmental conditions; many biotic and abi-

otic environmental stresses such as micro-organ-

ism infections (Won Jung et al. 2003), increased  

GraphPad Software Inc., San Diego CA): ANOVA 

and Tukey test were applied to the data when nor-

mality and homogeneity of variance were satisfied. 

Data not conforming to the assumptions (pollen via-

bility, no of female flowers and racemes and pollen 

Table I. Mean ± standard error (SE) of the principal traits meas-

ured in beetle exposed and not-exposed (control) plants at the 

end of the experiment. No effect of the Ophraella treatment was 

found on any of the plant traits measured (ANOVA and Tukey’s 

test or Kruskal–Wallis p > 0.05).

Plant traits N
Control 

(mean ± SE) N
Exposed 

(mean ± SE)

Plant height 
(cm)

17 42.71 ± 4.44 14 45.29 ± 3.55

Plant width 
(cm)

17 30.35 ± 4.26 14 26.50 ± 2.41

No of female 
flowers per 
plant

17 697.71 ± 237.29 14 219.93 ± 44.26

No of male 
racemes per 
plant

9 1.44 ± 0.13 8 1.75 ± 0.31

No of male 
heads per plant

9 32.75 ± 10.86 8 28.00 ± 8.85

Pollen weight 
per plant (mg)

6 2.68 ± 1.35 5 1.22 ± 0.28

Figure 2. Viability of mature ragweed pollen released from 
flowers. (A) Staining with FDA: viable pollen grains show bright 
fluorescence; (B) mean percentage of viable pollen grains in 
control and O. communa exposed plants. No statistical difference 
between control and exposed plants was found, according to the 
Kruskal-Wallis non-parametric procedure (p > 0.05).
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classes of pathogenesis-related proteins (PRPs; Datta 

& Muthukrishnan 1999; Hoffmann-Sommergruber 

et al. 2000; Sinha et al. 2014). Thus, although the 

recent and accidental introduction of O. communa 

to Northern Italy represents a great opportunity to 

control A. artemisiifolia, the attacks by this insect 

also represents stress, and may therefore increase the 

amount or allergenicity of ragweed pollen in surviving 

plants. This may be problematic when these insects 

are used for biological control of the plants canceling 

its positive biocontrol effect on human health.

In our experiment, attack by O. communa and 

additional manual defoliation during flowering did 

atmospheric greenhouse gasses, temperature, and air 

pollution (Shea et al. 2008; Smith et al. 2013), can 

in fact increase pollen allergenicity and consequently 

the severity and frequency of respiratory allergic dis-

eases (D’Amato et al. 2015).

Pathogen attacks and insect feeding, in particular, 

trigger the expression of plant defensive proteins 

that exert direct effects on the antagonist or play 

a protective role for plant organs. Some of these 

proteins are allergens, which are accumulated in 

plant tissues. Examples are LTP allergens, which are 

proven to be transcriptionally activated by pathogen 

infection in Capsicum annuum tissues, and some 

Figure 3. Total allergenicity of pollen samples from single racemes assessed with slot blotting. (A) Representative slot blot membrane 
probed with a pool of selected patient sera; All: internal standard (commercial pollen from Allergome). (B) Assessment of total pollen 
allergenicity through image analysis: the IOD of immunoreactive sposts with respect to the IOD of the standard (field sample IOD /
standard IOD), was measured. The results reported are the mean (± standard deviation) of three independent experiments. ANOVA and 
Tukey test, p > 0.05 were performed; r.u.: relative units.
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was no difference with unused plants left uncaged 

(ANOVA and Tukey test, p > 0.05) indicating that 

defoliation of mature A. artemisiifolia may indeed not 

affect allergenicity.

This study represents a first attempt to define the 

effect of O. communa on ragweed pollen amounts and 

allergenicity. More extended studies in controlled 

and field conditions are presently underway.
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