24 research outputs found

    The Origin and Evolutionary History of HIV-1 Subtype C in Senegal

    Get PDF
    Background: The classification of HIV-1 strains in subtypes and Circulating Recombinant Forms (CRFs) has helped in tracking the course of the HIV pandemic. In Senegal, which is located at the tip of West Africa, CRF02_AG predominates in the general population and Female Sex Workers (FSWs). In contrast, 40% of Men having Sex with Men (MSM) in Senegal are infected with subtype C. In this study we analyzed the geographical origins and introduction dates of HIV-1 C in Senegal in order to better understand the evolutionary history of this subtype, which predominates today in the MSM population Methodology/Principal Findings: We used a combination of phylogenetic analyses and a Bayesian coalescent-based approach, to study the phylogenetic relationships in pol of 56 subtype C isolates from Senegal with 3,025 subtype C strains that were sampled worldwide. Our analysis shows a significantly well supported cluster which contains all subtype C strains that circulate among MSM in Senegal. The MSM cluster and other strains from Senegal are widely dispersed among the different subclusters of African HIV-1 C strains, suggesting multiple introductions of subtype C in Senegal from many different southern and east African countries. More detailed analyses show that HIV-1 C strains from MSM are more closely related to those from southern Africa. The estimated date of the MRCA of subtype C in the MSM population in Senegal is estimated to be in the early 80's. Conclusions/Significance: Our evolutionary reconstructions suggest that multiple subtype C viruses with a common ancestor originating in the early 1970s entered Senegal. There was only one efficient spread in the MSM population, which most likely resulted from a single introduction, underlining the importance of high-risk behavior in spread of viruses

    Understory Bird Communities in Amazonian Rainforest Fragments: Species Turnover through 25 Years Post-Isolation in Recovering Landscapes

    Get PDF
    Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1–100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1–2 preisolation samples and 4–5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction

    Worldwide molecular epidemiology of HIV

    Full text link

    Mercury levels in birds and small rodents from Las Orquideas National Natural Park, Colombia

    No full text
    Mercury (Hg) is a heavy metal known as one of the most toxic elements on the planet. The importance of Hg on living organisms resides on its biomagnification ability. Artisanal gold extraction activities release substantial amounts of this metal, polluting the ecosystems. To assess the impact of gold mining in Las Orquideas National Natural Park (Colombia), total Hg (T-Hg) levels were evaluated from 37 bird and 8 small rodent species collected at two sites within the boundaries of the Natural Park (Abriaqui and Frontino municipalities) that have experienced some gold-extraction history. The mean concentration of T-Hg in bird feathers from both sites was 0.84 ± 0.05 µg/g fw. Differences between species were found according to diet. Total Hg levels were greater on insectivorous (1.00 ± 0.08 µg/g fw), followed by nectarivorous (0.73 ± 0.07 µg/g fw) and frugivorus (0.57 ± 0.09 µg/g fw) species. These Hg levels were greater than those found in feathers from a control sample belonging to the species Penelope perspicax (0.53 ± 0.03 µg/g fw), a frugivorous species living at the Otun Quimbaya Fauna and Flora Sanctuary, a forest without known gold mining. Mercury concentrations in the livers of small rodents were greater in specimens from Frontino (0.15 ± 0.01 µg/g fw) than those from Abriaqui (0.11 ± 0.01 µg/g fw), but levels were not different between species. These results indicate that Hg in birds depends mainly on their diet, but geographical location may affect Hg concentration in rodents. Moreover, Hg sources in natural parks of Colombia may not rely solely on gold mining, atmospheric deposition, among others factors, could be influencing its accumulation in biota. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature

    Differential drug resistance acquisition in HIV-1 of subtypes B and C

    Get PDF
    Background. Subtype C is the most prevalent HIV-1 subtype in the world, mainly in countries with the highest HIV prevalence. However, few studies have evaluated the impact of antiretroviral therapy on this subtype. In southern Brazil, the first developing country to offer free and universal treatment, subtypes B and C co-circulate with equal prevalence, allowing for an extensive evaluation of this issue. Methods and Findings. Viral RNA of 160 HIV-1+ patients was extracted, and the protease and reverse transcriptase genes were sequenced, subtyped and analyzed for ARV mutations. Sequences were grouped by subtype, and matched to type (PI, NRTI and NNRTI) and time of ARV exposure. Statistical analyses were performed to compare differences in the frequency of ARV-associated mutations. There were no significant differences in time of treatment between subtypes B and C groups, although they showed distinct proportions of resistant strains at different intervals for two of three ARV classes. For PI, 26% of subtype B strains were resistant, compared to only 8% in subtype C (p = 0.0288, Fisher’s exact test). For NRTI, 54% of subtype B strains were resistant versus 23% of subtype C (p = 0.0012). Differences were significant from 4 years of exposure, and remained so until the last time point analyzed. The differences observed between both subtypes were independent of time under rebound viremia in cases of virologic failure and of the number of HAART regimens used by treated patients. Conclusions. Our results pointed out to a lower rate of accumulation of mutations conferring resistance to ARV in subtype C than in subtype B. These findings are of crucial importance for current initiatives of ARV therapy roll-out in developing countries, where subtype is C prevalent
    corecore