35 research outputs found

    Measuring the Impacts of Community-based Grasslands Management in Mongolia's Gobi

    Get PDF
    We assessed a donor-funded grassland management project designed to create both conservation and livelihood benefits in the rangelands of Mongolia's Gobi desert. The project ran from 1995 to 2006, and we used remote sensing Normalized Differential Vegetation Index data from 1982 to 2009 to compare project grazing sites to matched control sites before and after the project's implementation. We found that the productivity of project grazing sites was on average within 1% of control sites for the 20 years before the project but generated 11% more biomass on average than the control areas from 2000 to 2009. To better understand the benefits of the improved grasslands to local people, we conducted 280 household interviews, 8 focus group discussions, and 31 key informant interviews across 6 districts. We found a 12% greater median annual income as well as a range of other socioeconomic benefits for project households compared to control households in the same areas. Overall, the project generated measurable benefits to both nature and people. The key factors underlying project achievements that may be replicable by other conservation projects include the community-driven approach of the project, knowledge exchanges within and between communities inside and outside the country, a project-supported local community organizer in each district, and strong community leadership

    Dynamics, Patterns and Causes of Fires in Northwestern Amazonia

    Get PDF
    According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests

    Implications of improved representations of plant respiration in a changing climate

    Get PDF
    Land-atmosphere exchanges influence atmospheric CO2. Emphasis has been on describing photosynthetic CO2 uptake, but less on respiration losses. New global datasets describe upper canopy dark respiration (Rd) and temperature dependencies. This allows characterisation of baseline Rd, instantaneous temperature responses and longer-term thermal acclimation effects. Here we show the global implications of these parameterisations with a global gridded land model. This model aggregates Rd to whole-plant respiration Rp, driven with meteorological forcings spanning uncertainty across climate change models. For pre-industrial estimates, new baseline Rd increases Rp and especially in the tropics. Compared to new baseline, revised instantaneous response decreases Rp for mid-latitudes, while acclimation lowers this for the tropics with increases elsewhere. Under global warming, new Rd estimates amplify modelled respiration increases, although partially lowered by acclimation. Future measurements will refine how Rd aggregates to whole-plant respiration. Our analysis suggests Rp could be around 30% higher than existing estimates

    Recent advances and future directions in soils and sediments research

    Full text link
    corecore