1,076 research outputs found
Changes in intracellular ion activities induced by adrenaline in human and rat skeletal muscle
To study the stimulating effect of adrenaline (ADR) on active Na+/K+ transport we used double-barrelled ion-sensitive micro-electrodes to measure the activities of extracellular K+ (aKe) and intracellular Na+ (aNai) in isolated preparations of rat soleus muscle, normal human intercostal muscle and one case of hyperkalemic periodic paralysis (h.p.p.). In these preparations bath-application of ADR (10−6 M) resulted in a membrane hyperpolarization and transient decreasesaKe andaNai which could be blocked by ouabain (3×10−4 M). In the h.p.p. muslce a continuous rise ofaNai induced by elevation ofaKe to 5.2 mM could be stopped by ADR. In addition, the intracellular K+ activity (aKi), the free intracellular Ca2+ concentration (pCai) and intracellular pH (pHi) were monitored in rat soleus muscle. During ADRaKi increased, pHi remained constant and intracellular Ca2+ apparently decreased. In conclusion, our data show that ADR primarily stimulates the Na+/K+ pump in mammalian skeletal muscle. This stimulating action is not impaired in the h.p.p. muscle
Mineral maturity and crystallinity index are distinct characteristics of bone mineral
The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2–4 lm thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis
Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter
Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients
Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling.
Signaling networks downstream of receptor tyrosine kinases are among the most extensively studied biological networks, but new approaches are needed to elucidate causal relationships between network components and understand how such relationships are influenced by biological context and disease. Here, we investigate the context specificity of signaling networks within a causal conceptual framework using reverse-phase protein array time-course assays and network analysis approaches. We focus on a well-defined set of signaling proteins profiled under inhibition with five kinase inhibitors in 32 contexts: four breast cancer cell lines (MCF7, UACC812, BT20, and BT549) under eight stimulus conditions. The data, spanning multiple pathways and comprising ∼70,000 phosphoprotein and ∼260,000 protein measurements, provide a wealth of testable, context-specific hypotheses, several of which we experimentally validate. Furthermore, the data provide a unique resource for computational methods development, permitting empirical assessment of causal network learning in a complex, mammalian setting.This work was supported by the National Institutes of Health National Cancer Institute (grant U54 CA112970 to J.W.G., G.B.M., S.M., and P.T.S.). S.M.H. and S.M. were supported by the UK Medical Research Council (unit program numbers MC_UP_1302/1 and MC_UP_1302/3). S.M. was a recipient of a Royal Society Wolfson Research Merit Award. The MD Anderson Cancer Center RPPA Core Facility is funded by the National Institutes of Health National Cancer Institute (Cancer Center Core Grant CA16672)
Three-Port Laparoscopic Cholecystectomy in a Brazilian Amazon Woman with Situs Inversus Totalis: Surgical Approach
Situs inversus totalis (SIT) is an uncommon anomaly characterized by transposition of organs to the opposite side of the body in a mirror image of normal. We report on an adult woman, born and resident in Brazilian Amazonia, presenting acute pain located at the left hypochondrium and epigastrium. During clinical and radiological evaluation, the patient was found to have SIT and multiple stones cholelithiasis. Laparoscopic cholecystectomy was safely performed with the three-port technique in a reverse fashion. In conclusion, this case confirms that three-port laparoscopic cholecystectomy is a safe and feasible surgical approach to treat cholelithiasis even in rare and challenging conditions like SIT
Prediction of Ideas Number During a Brainstorming Session
International audienceIn this paper, we present an approach allowing the prediction of ideas number during a brainstorming session. This prediction is based on two dynamic models of brainstorming, the non-cognitive and the cognitive models proposed by Brown and Paulus (Small Group Res 27(1):91–114, 1996). These models describe for each participant, the evolution of ideas number over time, and are formalized by differential equations. Through solution functions of these models, we propose to calculate the number of ideas of each participant on any time intervals and thus in the future (called prediction). To be able to compute solution functions, it is necessary to determine the parameters of these models. In our approach, we use optimization model for model parameters calculation in which solution functions are approximated by numerical methods. We developed two generic optimization models, one based on Euler’s and the other on the fourth order Runge–Kutta’s numerical methods for the solving of differential equations, and we apply them to the non-cognitive and respectively to the cognitive models. Through some feasibility tests, we show the adequacy of the proposed approach to our prediction context
Calcineurin Interacts with PERK and Dephosphorylates Calnexin to Relieve ER Stress in Mammals and Frogs
Background: The accumulation of misfolded proteins within the endoplasmic reticulum (ER) triggers a cellular process known as the Unfolded Protein Response (UPR). One of the earliest responses is the attenuation of protein translation. Little is known about the role that Ca 2+ mobilization plays in the early UPR. Work from our group has shown that cytosolic phosphorylation of calnexin (CLNX) controls Ca 2+ uptake into the ER via the sarco-endoplasmic reticulum Ca 2+-ATPase (SERCA) 2b. Methodology/Principal Findings: Here, we demonstrate that calcineurin (CN), a Ca 2+ dependent phosphatase, associates with the (PKR)-like ER kinase (PERK), and promotes PERK auto-phosphorylation. This association, in turn, increases the phosphorylation level of eukaryotic initiation factor-2 a (eIF2-a) and attenuates protein translation. Data supporting these conclusions were obtained from co-immunoprecipitations, pull-down assays, in-vitro kinase assays, siRNA treatments and [ 35 S]-methionine incorporation measurements. The interaction of CN with PERK was facilitated at elevated cytosolic Ca 2+ concentrations and involved the cytosolic domain of PERK. CN levels were rapidly increased by ER stressors, which could be blocked by siRNA treatments for CN-Aa in cultured astrocytes. Downregulation of CN blocked subsequent ER-stress-induced increases in phosphorylated elF2-a. CN knockdown in Xenopus oocytes predisposed them to induction of apoptosis. We also found that CLNX was dephosphorylated by CN when Ca 2+ increased. These data were obtained from [c 32 P]-CLN
Metabolic control in a nationally representative diabetic elderly sample in Costa Rica: patients at community health centers vs. patients at other health care settings
<p>Abstract</p> <p>Background</p> <p>Costa Rica, like other developing countries, is experiencing an increasing burden of chronic conditions such as diabetes mellitus (DM), especially among its elderly population. This article has two goals: (1) to assess the level of metabolic control among the diabetic population age ≥ 60 years old in Costa Rica, and (2) to test whether diabetic elderly patients of community health centers differ from patients in other health care settings in terms of the level of metabolic control.</p> <p>Methods</p> <p>Data come from the project CRELES, a nationally representative study of people aged 60 and over in Costa Rica. This article analyzes a subsample of 542 participants in CRELES with self-reported diagnosis of diabetes mellitus. Odds ratios of poor levels of metabolic control at different health care settings are computed using logistic regressions.</p> <p>Results</p> <p>Lack of metabolic control among elderly diabetic population in Costa Rica is described as follows: 37% have glycated hemoglobin ≥ 7%; 78% have systolic blood pressure ≥ 130 mmHg; 66% have diastolic blood pressure ≥ 80 mmHg; 48% have triglycerides ≥ 150 mg/dl; 78% have LDL ≥ 100 mg/dl; 70% have HDL ≤ 40 mg/dl. Elevated levels of triglycerides and LDL were higher in patients of community health centers than in patients of other clinical settings. There were no statistical differences in the other metabolic control indicators across health care settings.</p> <p>Conclusion</p> <p>Levels of metabolic control among elderly population with DM in Costa Rica are not that different from those observed in industrialized countries. Elevated levels of triglycerides and LDL at community health centers may indicate problems of dyslipidemia treatment among diabetic patients; these problems are not observed in other health care settings. The Costa Rican health care system should address this problem, given that community health centers constitute a means of democratizing access to primary health care to underserved and poor areas.</p
- …