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SUMMARY

Signaling networks downstream of receptor tyrosine
kinases are among the most extensively studied bio-
logical networks, but new approaches are needed
to elucidate causal relationships between network
components and understand how such relation-
ships are influenced by biological context and dis-
ease. Here, we investigate the context specificity of
signaling networks within a causal conceptual frame-
work using reverse-phase protein array time-course
assays and network analysis approaches. We focus
on a well-defined set of signaling proteins profiled
under inhibition with five kinase inhibitors in 32 con-
texts: four breast cancer cell lines (MCF7, UACC812,
BT20, and BT549) under eight stimulus conditions.
The data, spanning multiple pathways and com-
prising �70,000 phosphoprotein and �260,000 pro-
tein measurements, provide a wealth of testable,
context-specific hypotheses, several of which we
experimentally validate. Furthermore, the data pro-
vide a unique resource for computational methods
development, permitting empirical assessment of
causal network learning in a complex, mammalian
setting.

INTRODUCTION

The complexity of mammalian receptor tyrosine kinase (RTK)

signaling continues to pose challenges for the understanding
Cell Systems 4, 73–83, J
This is an open access article und
of physiological processes and aberrations that are relevant

to disease. Networks, comprising nodes and linking directed

edges, are widely used to summarize and reason about

signaling. Obviously, signaling systems depend on the concen-

tration and localization of their component molecules, so

signaling events may be influenced by genetic and epigenetic

context (Saez-Rodriguez et al., 2011; Good et al., 2009; Zalatan

et al., 2012). In disease biology, and cancer in particular, an

improved understanding of signaling in specific contexts may

have implications for precision medicine by helping to explain

variation in disease phenotypes or therapeutic response.

Genomic heterogeneity in disease has been well studied,

notably in cancer, and heterogeneity is also manifested at the

level of differential expression of components of signaling path-

ways downstream of RTKs (Akbani et al., 2014; Gerlinger and

Swanton, 2010; Nickel et al., 2012; Szerlip et al., 2012). However,

differences in average protein abundance (as captured in differ-

ential expression or gene set analyses) are conceptually distinct

from differences in the edge structure of signaling networks, with

the latter implying a change in the ability of nodes to causally in-

fluence each other. Causal relationships are also fundamentally

distinct from statistical correlations: if there is a causal edge

from node A to node B, then the abundance of B may be

changed by inhibition of A, but A and B can be correlated with

no causal edge linking them (see below for an illustrative

example). For this reason, standard concepts from multivariate

statistics (that in turn underpin many network analyses in bioin-

formatics) may not be sufficient for causal analyses (Pearl, 2009).

Canonical signaling pathways and networks (as described, for

example, in textbooks and online resources) typically summarize

evidence from multiple experiments, conducted in different cell

types and growth conditions, and therefore, such networks are

not specific to a particular context. Many well-known links in
anuary 25, 2017 ª 2016 The Authors. Published by Elsevier Inc. 73
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such networks most likely hold widely, and so canonical net-

works remain a valuable source of insights. However, if causal

signaling depends on context, then using canonical networks

alone will neglect context-specific changes, with implications

for reasoning, modeling, and prediction. A large literature has

focused on the question of inferring molecular networks from

data (for reviews, see De Smet and Marchal, 2010; Marbach

et al., 2010). The potential for molecular networks to depend

on context has motivated efforts to tailor network models in a

data-driven manner (Marbach et al., 2016; Petsalaki et al.,

2015; Will and Helms, 2016). Our approach is in this vein but

with an emphasis on interventional data and a principled causal

framework. Unbiased ‘‘interactome’’ approaches (e.g., Rolland

et al., 2014) expand our view of the space of possible signaling

interactions. However, due to the nature of genetic, epigenetic,

and environmental influences, such approaches cannot in gen-

eral identify signaling events specific to biological context (e.g.,

specific to a certain cell type under defined conditions).

We study context-specific signaling using human cancer cell

lines. The data span 32 contexts, each defined by the combina-

tion of (epi)genetics (breast cancer cell lines MCF7, UACC812,

BT20, and BT549) and stimuli. In each of the 32 (cell line, stim-

ulus) contexts, we carried out time-course experiments using ki-

nase inhibitors as interventions (note that as used here, the inhib-

itors do not contribute to defining the context). Reverse-phase

protein arrays (RPPAs; Tibes et al., 2006) were then used to inter-

rogate signaling downstream of RTKs. We used more than

150 high-quality antibodies targeting mainly total and phosphor-

ylated proteins (see Table S1).

The inhibitors applied in each context allowed elucidation of

context-specific causal influences between inhibited and down-

stream phosphoproteins. The extent of context specificity seen

can be summarized as follows: on average, across all kinase in-

hibitors and pairs of contexts in the study, approximately one in

five phosphoproteins show changes in abundance under inhibi-

tion in one context that are not seen in the other. We also

modeled the data using recently developed methods rooted in

probabilistic graphical models to reconstruct context-specific

networks intended to capture causal interplay between all

measured phosphoproteins (and not just interplay related to in-

hibited nodes).

Thus, we show that causal signaling networks depend on

context, with the pattern of changes under inhibition dependent

on biological background. This is supported by independent vali-

dation experiments. Furthermore, we advance a conceptual

view of signaling networks as causal networks (Pearl, 2009). In

addition, this paper adds to available resources in two ways.

First, it provides a rich data resource, spanning all combina-

tions of context, inhibitor, and time and allowing for a very

wide range of analyses, including, but not limited to, analyses

of the kind presented here. The data complement available

patient datasets (see, for example, Akbani et al., 2014) by

providing interventional readouts under defined conditions and

provide a wealth of testable hypotheses regarding potentially

novel and context-specific signaling links. Second, the data

serve as a resource for computational biology benchmarking.

Network reconstruction has long been a core topic in computa-

tional biology, but performance with respect to learning of causal

links has mainly been benchmarked using simulated data that
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may not adequately reflect the challenges of real data and rele-

vant biology. A previous study established a small, five-node

synthetic network in yeast that was valuable to the computa-

tional biology community, as it provided a gold-standard

network in a biological model (Cantone et al., 2009). The design

of our experiments allows for systematic testing of causal

network learning in a complex mammalian setting and provides

a unique resource for development of computational biology

methods. The data presented here were used in the recent

HPN-DREAM (Heritage Provider Network-Dialogue for Reverse

Engineering Assessment and Methods) network inference chal-

lenge. The challenge focused on causal networks, and the data

were used to score more than 2,000 submitted networks (full de-

tails of the challenge are described in Hill et al., 2016).

RESULTS

Causal Molecular Networks and Context Specificity
We first define causal molecular networks at a conceptual level.

Consider a specific cell line grown under defined conditions. We

refer to the complete biological setting (including genetic/epige-

netic background and growth/environmental conditions) as the

context c. If, in this setting, we observe a change in molecule

B under inhibition of molecule A, we can conclude that there ex-

ists a causal pathway (i.e., a sequence of mechanistic events,

possibly involving additional molecular species) between A and

B in context c. Conceptually, performing all possible inhibition

experiments on a set of molecules (including in combinations)

would allow construction of a directed network Gc, with nodes

corresponding to the molecules and edges encoding causal re-

lationships between nodes. Specifically, an edge in Gc indicates

that in context c, inhibition of the parent node can lead to a

change in the child node that is not mediated via any other

node in the network. We refer to Gc as the context-specific

causal network and to edges therein as causal edges (Figure 1A).

Due to the large number of potentially relevant molecular spe-

cies, it is likely that in any specific study, there will be variables

that are unmeasured but that nonetheless have a causal influ-

ence on one or more measured variables. Suppose there is no

causal pathway between A and B, but the nodes are correlated

due to co-regulation by an unobserved node C that is not repre-

sented in the graph (Figure 1B). Then, since inhibition of Awould

not be capable of changing B, an edge from A to B would not be

contained in the ground truth network Gc as defined above,

regardless of the strength of any correlation or statistical depen-

dence between A and B (Figure 1C). A contrasting case is that of

amissing variable that is intermediate in a causal pathway, e.g., if

A influences B via an unmeasured molecule C. Then, using the

definition above, we would consider the edge A/B to be a cor-

rect representation of the causal influence. However, if C were

observed, the correct model would be A/C/B (Figure 1C).

Thus, the definition we use is compatible with missing variables

while correctly encoding the effect of interventions on observed

nodes, but the edges are not intended to encode physically

direct influences only. We note that there are many subtle and

still open aspects of the epistemology of interventions and

causation; for a wider discussion, see Woodward (2016).

The definition of causal molecular networks above is rooted in

changes under inhibition but is not restricted to any particular
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Figure 1. Context-Specific Causal Net-

works

(A) Context-specific causal influences. NodeA has

a causal influence on node B in contexts c1 and c3,

but not c2, encoded by the presence of a causal

edge between A and B in c1 and c3 only. This re-

flects the outcome of experiments where A is in-

hibited. Here, each context is defined by the

combination of cell line and growth condition.

(B) Correlation and causation. The abundance of

node A is correlated with that of node B due to

regulation by the same node C. However, as there

is no causal influence (direct or indirect) of A on B,

inhibition of A does not result in a change in the

abundance of B, no matter how strong the corre-

lation or statistical dependence.

(C) Causal networks andmissing nodes. In the first

example, nodeC regulates both nodes A andB (as

in panel B). In the formulation used here, if C is not

observed and not included in the network, but

A and B are, we would regard the network with no

edge between A and B in either direction as the

correct or ground truth causal network, in line with

the results of experimental inhibition of these no-

des, as shown. In the second example, the un-

derlyingmechanism is thatA influencesC, andC in

turn influences B. In the formulation used here, if

C is not measured and not included in the network,

an edge from A to Bwould be regarded as correct,

in line with the results of experimental inhibition of

the nodes. However, if all three nodes were

included, the correct network would match the

underlying mechanism. Although abundance of

B changes under inhibition of A, an edge from A to

B would be regarded as incorrect here because

the influence ofA onB is fully mediated via another

network node (i.e.,C). See text for further details of

the causal formulation and its interpretation.
mechanism. We focus on kinase inhibitors, phosphoprotein no-

des, and relatively short-term changes (up to 4 hr after inhibition),

and to that extent, our focus is on signaling, but we note that

changes seen in our data could be due to a number of mecha-

nisms, including transcription, translation, or protein stability. In

considering causal influences, it is important to specify a relevant

time frame, because under the same intervention, different

changes may occur over different time periods (see also Discus-

sion). Note also that even if one assumes a very large sample size

and neglects statistical issues entirely, a notion of magnitude (of

change under inhibition) remains implicit in the network definition

itself and influences the sparsity of the ground truth network.

Overview of Approach
We sought to investigate causal signaling networks in specific

biological contexts. We considered four breast cancer cell lines

(MCF7, UACC812, BT20, and BT549) derived from distinct

epigenetic states and harboring different genomic aberra-

tions (these cell lines have been extensively characterized; see
C

Barretina et al., 2012; Garnett et al.,

2012; Heiser et al., 2012; Neve et al.,

2006). Each cell line was serum starved

for 24 hr and then at time t = 0 min stimu-
lated with one of eight different stimuli (Figure 2A). For each

(cell line, stimulus) context, we carried out RPPA time-course as-

says comprising a total of seven time points spanning 4 hr and

under five different kinase inhibitors plus DMSO as a control

(Figure 2A; STAR Methods; the assays included additional,

later time points that were not used in our analyses but are avail-

able in Data S1). To ensure that targets of the kinase inhibitors

were effectively blocked, cells were treated with inhibitors for

2 hr before stimulus. Low concentrations of each inhibitor were

used to minimize off-target effects (see STAR Methods). Due

to the functional significance of phosphorylation, the analyses

presented below focus on the 35 phosphoproteins that were

measured in all cell lines (see STAR Methods and Table S1;

Data S1 contains measurements for all antibodies). Context-

specific changes under intervention were summarized as

‘‘causal descendancymatrices’’ (Figure 2B; see below).Machine

learning methods were used to integrate the interventional data

with known biology to reconstruct context-specific signaling net-

works (Figure 2C).
ell Systems 4, 73–83, January 25, 2017 75
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Figure 2. Data-Driven Reconstruction of Context-Specific Causal Signaling Networks
(A) Overview of experimental approach. Reverse-phase protein arrays (RPPAs) were used to investigate protein signaling in four human breast cancer cell lines

under eight different stimuli. The combinations of cell line and stimulus defined 32 (cell line, stimulus) contexts. Prior to stimulus, cell lines were serum starved

and treated with kinase inhibitors or DMSO control. RPPA assays were performed for each context at multiple time points post-stimulus, using more than

150 high-quality antibodies to target specific proteins, including �40 phosphoproteins (the precise number of antibodies varies across cell lines; see STAR

Methods and Table S1).

(B) Causal descendancymatrices (CDMs). CDMs summarizing changes under intervention across all contexts were constructed for each intervention (see text for

details).

(C) Overview of causal network learning procedure. Interventional time-course data for each context were combined with existing biological knowledge in the

form of a prior network to learn context-specific phosphoprotein signaling networks. Networks were learned using a variant of dynamic Bayesian networks

designed for use with interventional data and that allowed joint learning over all 32 contexts at once (see STAR Methods).
Interventional Time-Course Data Specific to Biological
Context
Comparing time-course data between inhibitor and control

(DMSO) experiments allowed us to detect changes to phospho-

protein nodes caused by kinase inhibition (see STAR Methods

for details). These changes are visualized in a global manner

for cell line MCF7 in Figure 3B, with DMSO time courses shown

in Figure 3A. In Figure 3B, the color coding indicates direction of

effect (see examples in Figure 3C): green indicates a decrease

under inhibition relative to control (consistent with positive regu-

lation) and red an increase under inhibition (consistent with nega-

tive regulation). Corresponding visualizations for UACC812,

BT20, and BT549 are shown in Figure S1.

Many effects, including many classical ones, are not stimulus

dependent. For example, phospho-p70S6K is reduced relative

to control under mTOR inhibition (inhibitor AZD8055; Figure 3C),

in line with the known causal role of mTOR in regulating phos-

phorylation of p70S6K. Since mTOR signaling is already active

in serum starved cells, the reduction in phospho-p70S6K under

mTOR inhibition is seen at all time points, including t = 0 min

(recall that the inhibitor is applied prior to stimulus). However,

some changes under intervention are specific to individual stim-
76 Cell Systems 4, 73–83, January 25, 2017
uli. Some of these effects can be readily explained, such as the

reduction in abundance of several phosphoproteins in the AKT

and mitogen-activated protein kinase (MAPK) pathways under

fibroblast growth factor receptor (FGFR) inhibition (inhibitor

PD173074) for cell line MCF7 stimulated with FGF1. Other stim-

ulus-specific changes are less expected, including the decrease

in abundance of phospho-AKT (phosphorylated at threonine

308) in cell lineMCF7 under inhibition ofmTOR and phosphatidy-

linositol 3-kinase (PI3K) (inhibitor BEZ235) that is observed in

only four of the stimuli.

Causal Descendancy Matrices Summarize Changes
under Intervention across Multiple Contexts
Changes seen under inhibition of mTOR (catalytic inhibitor

AZD8055) are summarized in Figure 4A (with phosphoproteins

in rows and the 32 contexts in columns). Here, a filled-in box for

phosphoprotein p in context c indicates a salient change under

mTOR inhibition (seeSTARMethods), consistentwith a causal in-

fluence of mTOR on phosphoprotein p in context c. This could

occur via a causal pathway involving other (measured or unmea-

sured) nodes. In other words, an entry in location (p,c) in the ma-

trix indicates that phosphoprotein p is a descendant of mTOR in
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Figure 3. Phosphoprotein Time-Course Data and Context-Specific Changes under Inhibition for Breast Cancer Cell Line MCF7

(A) Phosphoprotein time courses under DMSO control. Rows correspond to 35 phosphoproteins (a subset of the full set of 48; see STARMethods for details) and

columns correspond to the eight stimuli. Each time course shows log2 ratios of phosphoprotein abundance relative to abundance at t = 0. Shading represents

average log2 ratio for t > 0.

(B) Phosphoprotein time courses under kinase inhibition. Each of the five vertical blocks corresponds to a different inhibition regime. Within each block, rows and

columns are as in (A). Each time course shows log2 ratios of phosphoprotein abundance under inhibition relative to abundance under DMSO control. Shading

represents direction of changes in abundance due to inhibitor: Green denotes a decrease in abundance, red denotes an increase and gray denotes no salient

change (see examples in C). See STAR Methods for details of statistical analysis. For both (A) and (B), plots were generated using a modified version of the

DataRail software (Saez-Rodriguez et al., 2008). Each phosphoprotein is plotted on its own scale, and phosphoproteins are ordered by hierarchical clustering of

all data. See Figure S1 for corresponding plots for cell lines UACC812, BT20, and BT549.

(C) Selected examples from (B) showing control (DMSO) and inhibitor time courses separately; box color identifies the source cell in (B). Examples are shown for

(from left to right) a clear decrease in abundance, a clear increase in abundance, a decrease in abundance that is borderline under the criteria we use, a borderline

case called negative (i.e., called as no change), and a clear negative case. Shaded region indicates time-averaged replicate SD. See also Figure S2.
the causal networkGc for context c; we therefore refer to thisma-

trix as a causal descendancy matrix for mTOR. For comparison,

an additional column shows proteins that are descendants of

mTOR according to a canonical signaling network (Figure 4B;

STAR Methods). Many classical signaling links are conserved

across cell lines and stimuli, but there are also many examples

of influences that are both non-canonical and context-specific.

For example, phospho-p38 is elevated in UACC812 cells treated

with the mTOR inhibitor AZD8055 under serum stimulation,

whereas there is no change in BT549 cells under the same condi-
tions. Similarly, we obtained causal descendancy matrices for

each of the other inhibitors in our study (Figure S3). On average

across all kinase inhibitors andpairs of contexts, 8 out of 35phos-

phoproteins show salient changes under inhibition in one context

that are not seen in theother (meannumber of differences=8.14).

Considering only pairs of cell lines under the same stimulus, the

mean number of differences is 8.58, while considering pairs of

stimuli for the same cell line, the corresponding value is 6.38.

This suggests that the differences in (epi)genetic background

between the cell lines have a relatively pronounced effect.
Cell Systems 4, 73–83, January 25, 2017 77
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(A) Causal descendancy matrix showing causal effects observed under mTOR inhibitor AZD8055 in each of the 32 (cell line, stimulus) contexts. Rows represent

phosphoproteins and columns represent contexts (see Figure 3). Black boxes indicate phosphoproteins that show a salient change under mTOR inhibition in a

given context (see STAR Methods) and can therefore be regarded as causal descendants of mTOR in the signaling network for that context. The final column on

the right indicates phosphoproteins that are descendants of mTOR in the canonical mTOR signaling pathway shown in (B). Phosphoproteins are ordered first by

canonical column and then by hierarchical clustering of all data. See Figure S3 for causal descendancy matrices for the other inhibitor regimes.

(B) Canonical mTOR signaling pathway. Blue nodes are descendants of mTOR in the network, and white nodes are non-descendants. The pathway shown is a

subnetwork of the prior network used within the network inference procedure (Figure S4). Full nodes names, including phosphorylation sites, are provided in

Table S4.

(C) Summary of western blot validations of causal effects observed in RPPA data. A number of observations from the causal descendancy matrices were chosen

for validation via western blot analysis. The number of phosphoprotein validations attempted (‘‘Tested’’) and the number of these that successfully validated

(‘‘Validated’’) are presented for various (cell line, stimulus, inhibitor) combinations. Summary totals are also presented for each cell line, each inhibitor, and across

all validation experiments. See also Table S2.
We sought to validate some of the observed causal effects by

western blot analysis (STAR Methods). Observations were

selected for validation across both inhibitors and antibodies,

and included instances of increase and decrease under inhibi-

tion, as well as instances where no effect was observed (Table

S2). A summary of the number of observations tested for each

cell line and inhibitor regime and of validation success rate in in-

dependent experiments (i.e., new lysates) is shown in Figure 4C.

Overall, we validated 78% of observations tested (104 out of 134

observations). There were 25 (antibody, inhibitor) combinations

that for the same stimulus showed differing effects across cell

lines in the RPPA data (and which were also tested by western
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blotting); 17 of these instances of heterogeneity across cell lines

validated (68%). The corresponding validation rate for (antibody,

inhibitor) combinations that for the same cell line showed

differing effects across stimuli was only 3 out of 13 (23%). Fail-

ures to validate could represent biological variability, differential

sensitivity between RPPA and western blotting, use of different

antibodies, or other technical issues.

Machine Learning of Signaling Networks
We used dynamic Bayesian networks to learn context-specific

causal networks over all measured phosphoprotein nodes

(including those not intervened upon). To do so, we exploited
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Figure 5. Context-Specific Signaling Networks Reconstructed Using a Machine Learning Approach

Data for 35 phosphoproteins were analyzed using a machine learning approach based on interventional dynamic Bayesian networks, integrating also known

biology in the form of a prior network (Figure S4). This gave a set of scores (edge probabilities) for each possible edge in each (cell line, stimulus) context (see STAR

Methods). For each cell line, a summary network was obtained by averaging edge probability scores across the eight stimulus-specific networks for that cell line.

Edge color denotes cell line. Only edges with average probabilities greater than 0.2 are shown. A black edge indicates an edge that appears (i.e., is above the

0.2 threshold) in all four cell lines. Edge thickness is proportional to the average edge probability (average taken across all 32 contexts for black edges). Solid or

dashed edges were present or not present in the prior network, respectively. Edges are directed with the child node indicated by a circle. Edge signs are not

reported; the modeling approach does not distinguish between excitatory and inhibitory causal effects. Full node names, including phosphorylation sites, are

provided in Table S4. Network visualized using Cytoscape (Shannon et al., 2003). See also Table S3.
several recent methodological advances that allow integration of

interventional data and simultaneous network learning across

multiple related problem instances (here, contexts; see STAR

Methods and references therein for details). Known biology

was incorporated using a prior network (Figure S4).

Figure 5 summarizes networks across all contexts by aver-

aging across the eight stimulus-specific networks for each of

the four cell lines. We see that while many edges, including

several classical ones, are near universal, others are cell line

specific, mirroring, via a global analysis, the inhibition data re-

ported above (Figure 4A). The networks contained edges

included in the prior network as well as many edges that were

not. Across the 32 contexts, networks contained an average of

49 edges (at a threshold of 0.2 applied to the edge probabilities

that are the output of the learning procedure) and, on average,

40% of edges in each network were not in the prior network (Ta-

ble S3). We discuss potentially novel edges that were not in the

prior below. As discussed in Hill et al. (2016), the challenging na-

ture of causal network learning means that empirical perfor-

mance assessment is important. We used an extended variant

of the train-and-test procedure described in Hill et al. (2016) to

systematically assess causal network learning (see STAR

Methods). We found that the models were able to achieve signif-

icant agreement with unseen test interventional data in most of

the contexts (Figure S5). However, we note that empirical

assessment is a frontier topic in causal inference, and the
assessment procedure used here is subject to a number of ca-

veats (see Discussion).

Validation of Context-Specific Signaling Hypotheses
We identified 235 edges in the inferred networks that were not

in the prior network. These potentially novel edges shared

35 parent proteins, 4 of which were inhibited in the original data-

set. Five edges with parent nodes not among those inhibited in

the original RPPA data were selected for validation by western

blot. Edge selection was done on the basis of biological interest

and availability of sufficiently specific inhibitors for the parent no-

des (Figure 6). We note that our computational approach pre-

dicts presence/absence of each (directed) edge, but not sign

(activating or inhibiting).

For each of the five edges, we tested contexts in which the

edge was predicted as well as those in which the edge was

not predicted. We inhibited the parent node and observed

whether this altered abundance of the predicted child node.

We found evidence supporting each of the five predicted causal

edges, but with often-complex context dependence. These re-

sults, and their agreement and disagreement with context-spe-

cific predictions from network modeling, are summarized in Fig-

ures 6F and 6G.

An edge from Chk2_pT68 to p38_pT180/Y182 (for phospho-

proteins, we give the protein name before an underscore, which

is followed by the phosphorylation site or sites) was predicted
Cell Systems 4, 73–83, January 25, 2017 79
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Figure 6. Validation of Novel Network Edges
Western blot analysis of selected context-specific network edges that were not in the prior network. (A–E) Edges tested were (A) phospho-Chk2 to phospho-p38,

(B) phospho-p38 to phospho-JNK, (C) phospho-Src to phospho-NF-kB, (D) phospho-p70S6K to phospho-p27, and (E) phospho-Chk2 to phospho-YAP. Orange

boxed areas indicate observed changes in abundance of the predicted child node under inhibition of the parent node in a single (cell line, stimulus) context

(changes in abundance are determined by visual inspection of the bands). Edge probabilities output by the network learning procedure are shown for each

context tested (‘‘edge strength’’).

(F) A summary of the validation experiments. NA denotes not applicable (the experimentwas not run), andNEdenotes no effect (therewas no change in child node

abundance upon inhibition of the parent node). An arrow indicates results consistent with an activating parent node. A stunted line represents results consistent

with an inhibitory edge. Symbols are colored orange to indicate that an edge was predicted for the corresponding cell line under one of the stimuli tested.

(legend continued on next page)
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only in cell line BT549 (Figure 5). We inhibited Chk2 with

AZD7762 in BT549 cells and saw decreases in phospho-p38

under serum (fetal bovine serum [FBS]) and neuregulin (NRG)1,

where the edge was predicted, as well as under insulin, where

the edge was not predicted (Figure 6A). In contrast, there is no

change in phospho-p38 in BT20 cells under AZD7762 treat-

ment, consistent with the absence of the edge in the BT20

networks. Here, we see that the edge validates in a cell line-

specific, but not stimulus-specific, manner. However, it is impor-

tant to note that AZD7762 inhibits Chk1 and Chk2 with equal

potency and also demonstrates activity, albeit lower, against

other kinases.

The networks predicted an edge from p38_pT180/Y182 to

JNK_pT183/T185 in BT549 and BT20 cells under stimulus with

FBS. We inhibited p38 with VX702 in BT549, BT20, and

UACC812 cells stimulated with FBS. In line with network predic-

tions, we observed an increase in phospho-JNK in BT549 and

BT20 cells (Figure 6B), but we also observed a modest increase

in phospho-JNK in UACC812 cells, where the edge was not

predicted.

An edge from Src_p416 to nuclear factor (NF)-kB-p65_pS536

was predicted only in BT20 cells stimulated with epidermal

growth factor (EGF). Upon inhibition of Src with KX2391 both

before and after stimulation with EGF, an increase in the abun-

dance of phospho-NF-kB was observed in BT20 cells, consis-

tent with the presence of a causal link (Figure 6C). The connec-

tion between phospho-Src and phospho-NF-kB was also

observed in MCF7, where the edge was not predicted.

An edge from p70S6K_pT389 to p27_pT198 was predicted in

all of the UACC812 and BT549 networks. The edgewas also pre-

dicted in MCF7 networks for PBS, insulin, FGF, NRG1, and insu-

lin-like growth factor (IGF)1 and in the BT20 NRG1 network.

When p70S6K was inhibited in UACC812 cells with PF4708671,

a change in phospho-p27 was observed only at the zero time

point before stimulus was added (Figure 6D). In MCF7 cells stim-

ulated with hepatocyte growth factor (HGF), phospho-p27

decreased in abundance under p70S6K inhibition; however, the

edgewasnot predicted in this context.WhenPF4708671-treated

MCF7 cells were stimulatedwith IGF, a context in which the edge

was predicted with high probability, no change in phospho-p27

was observed. Similarly, there was no change in phospho-p27

in BT20 cells that had been treated with PF4708671 and stimu-

lated with HGF.

In BT549, an edge was predicted from Chk2_pT68 to

YAP_pS127 under HGF and insulin. BT549 cells treated with

the Chk2 inhibitor AZD7762 exhibit an increase in phospho-

YAP (Figure 6E). This edge was not predicted in any other cell

line tested. However, in both UACC812 and MCF7 cells treated

with AZD7762, a decrease in the abundance of phospho-YAP is

observed. Active Chk2 appears to decrease phospho-YAP in

BT549 cells (where the edge was predicted) and increase phos-

pho-YAP in UACC812 and MCF7 cells (where the edge was not

predicted). These results are consistent with the existence of a
(G) Summary of agreement and disagreement between predicted edges and va

showed evidence for the edge in a (cell line, stimulus) context in which it was predi

each edge, respectively. A green tick denotes specificity in (partial) agreement wit

in agreement with predictions in terms of the precise contexts in which effects

validation experiments, despite being predicted by the networks.
causal influence of phospho-Chk2 on phospho-YAP in all of

these cell lines and not just in BT549 as predicted.

DISCUSSION

The data and analyses presented here support the notion that

causal molecular networks can depend on context. We focused

on signaling proteins and breast cancer cell lines. The cell lines

represent contexts that are genetically perturbed but with a

shared cancer type. The heterogeneity that we observed in

causal networks suggests that substantial differences could

exist between, for example, samples from different tissue types

or divergent environmental conditions. This strongly argues for a

need to refine existing regulatory models for specific contexts,

not least in disease biology.

Given the range of potentially relevant contexts—spanning

combinations of multiple factors, including genetic, epigenetic,

and environmental—we do not believe that characterization of

causal networks across multiple contexts can feasibly be done

using classical approaches in a protein-by-protein manner.

Rather, it will require high-throughput data acquisition and

computational analysis. Such a program of research requires

an appropriate conceptual framework rich enough to capture

regulatory relationships but still tractable enough for large-scale

investigation. Furthermore, for practical application, such an

approach needs to be sufficiently robust to missing or unknown

variables. Causal models of the kind we discussed may provide

an appropriate framework because, unlike purely correlational

models, they allow for reasoning about change under interven-

tion and are, to a certain extent, robust to missing variables. In

particular, causal descendancy matrices (Figures 4A and S3)

are robust tomissing variables in the sense that addition of a pro-

tein (row) to the matrix would not change the existing entries. We

expect that a systematic program of investigation into context-

specific causal networks will be important in many disease

areas, and perhaps especially those that have to date not been

well represented in the literature.

Our results extend the well-established notion of genomic in-

tertumoral heterogeneity in cancer to the level of signaling

phenotype. We found that cell line-specific findings were more

reliable than stimulus-specific findings. This may be because

the magnitude of epigenetic and genetic differences between

cell lines is more marked than differences between stimuli, all

of which activate closely related cell-surface receptors.

Our approach relied on inhibitor specificity, but we note that

even at relatively low concentrations, off-target effects cannot be

entirely ruled out. However, if the inhibitors were highly non-spe-

cific, the relatively good results seen in the train-and-test analysis

would likely not be possible, since the analysis relies on assumed

inhibitor targets. In the future, itmayberelevant toconsidermodels

that allow uncertainty in the inhibitor targets themselves.

We highlighted the need to specify a relevant time frame in

defining a causal graph. Indeed, an inhibitor may in the short to
lidation experiments. The first row indicates whether validation experiments

cted. The second and third rows concern the cell line and stimulus specificity of

h predictions from inferred networks; an orange tick denotes specificity, but not

were seen; and a red cross indicates that specificity was not observed in the
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medium term induce changes to specificmolecules, but over the

longer term, the same inhibitor might induce adaptive changes to

the cells themselves, e.g., via changes to epigenetic state (Dun-

can et al., 2012; Lee et al., 2012). We did not consider such ‘‘re-

wiring’’ in this article but note that the methods we discussed

could be used to study rewiring (e.g., by comparing networks

before and after adaptation).

In common with most protein profiling studies, including both

low- and high-throughput techniques, our experiments were

based on bulk assays and can therefore only elucidate signaling

heterogeneity at the level of cell populations; we did not consider

cell-to-cell heterogeneity, tumor stromal interactions, or the

spatial heterogeneity of tumors that plays an important role

in vivo (Bedard et al., 2013; González-Garcı́a et al., 2002). How-

ever, our data have implications for inter- and intra-tumoral het-

erogeneity, because they suggest the possibility that in vivo

causal signaling networks, and in turn the cell fates and disease

progression events that they influence, may depend on the local

micro-environment. Further work will be needed to elucidate

such dependence and draw out its implications.

In the future, causal molecular networks may start to play a

role in precision medicine, for example by helping to inform

rational assignment of targeted therapies. An implication of the

context specificity we report is that such analyses may require

models that are learned, or at least modified, for individual sam-

ples (or subsets of samples). Although causal models are in

some ways simpler than fully dynamical ones, causal inference

remains fundamentally challenging and is very much an open

area of research. For this reason, alongside advances in relevant

assays, a personalized, network-based approach will require

suitable empirical diagnostics. Hill et al. (2016) used the data pre-

sented here to score, in an automated manner, over 2,000 net-

works (�70 methods each applied to infer 32 context-specific

networks) submitted to the HPN-DREAM network inference

challenge, and we used an extended version of this assessment

procedure here. Such assessment procedures might allow for

automated quality control, for example rejecting networks not

sufficiently consistent with unseen interventional readouts

(e.g., we did not obtain statistically significant performance un-

der any test inhibitor for the [BT549,EGF] context; see Figure S5).

However, as discussed in Hill et al. (2016) the assessment pro-

cedure remains limited in several ways, and this argues for

caution in interpreting the relatively good performance reported

here. Of particular relevance to context specificity, we note that

the procedure focuses on global agreement with held-out inter-

ventional data and not specifically on identification of differences

between contexts. Indeed, our validation experiments showed

that although all novel edges that were tested validated in one

or more contexts, network predictions were not accurate with

respect to the precise context(s) in which changes were seen.

Recently, Carvunis and Ideker (2014) proposed a view of

cellular function involving hierarchies of elements and processes

and not just networks. Building detailed dynamical or biophysical

models over hierarchies spanning multiple time and spatial

scales may prove infeasible. A more tractable approach may

be to extend coarser causal models of the kind used here in a hi-

erarchical direction, for example by allowing causal links to cross

scales and subsystems. Thus, the approach we pursued—of

causal models based on context-specific interventional data—
82 Cell Systems 4, 73–83, January 25, 2017
could in the future be used to populate models over biological

hierarchies.
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KEY RESOURCES TABLE
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Antibodies

Rabbit polyclonal anti-14-3-3-beta (clone C-20) Santa Cruz Cat#sc-628; RRID: AB_630818

Mouse monoclonal anti-14-3-3-epsilon (clone 8C3) Santa Cruz Cat#sc-23957; RRID: AB_626619

Rabbit polyclonal anti-14-3-3-zeta (clone C-16) Santa Cruz Cat#sc-1019; RRID: AB_2218378

Rabbit polyclonal anti-4E-BP1 Cell Signaling Technology Cat#9452; RRID: AB_331692

Rabbit monoclonal anti-phospho-4E-BP1 (Ser65)

(clone 174A9)

Cell Signaling Technology Cat#9456; RRID: AB_823413

Rabbit polyclonal anti-phospho-4E-BP1 (Thr37/46) Cell Signaling Technology Cat#9459; RRID: AB_2262165

Rabbit polyclonal anti-53BP1 Cell Signaling Technology Cat#4937; RRID: AB_10694558

Rabbit polyclonal anti-phospho-ACC (Ser79) Cell Signaling Technology Cat#3661; RRID: AB_330337

Rabbit monoclonal anti-ACC1 (clone EP687Y) Epitomics Cat#1768-1; RRID: AB_598134

Rabbit monoclonal anti-ACVRL1 (clone EPR4074) Epitomics Cat#2940-1; RRID: AB_2222593

Mouse monoclonal anti-AIB1 (clone 34) BD Biosciences Cat#611105; RRID: AB_2151198

Rabbit monoclonal anti-Akt (pan) (clone C67E7) Cell Signaling Technology Cat#4691; RRID: AB_915783

Rabbit polyclonal anti-Akt Cell Signaling Technology Cat#9272; RRID: AB_329827

Rabbit polyclonal anti-phospho-Akt (Ser473) Cell Signaling Technology Cat#9271; RRID: AB_329825

Rabbit polyclonal anti-phospho-Akt (Thr308) Cell Signaling Technology Cat#9275; RRID: AB_329828

Mouse monoclonal anti-alpha-catenin (clone 1G5) Calbiochem Cat#CA1030; RRID: AB_2243846

Rabbit polyclonal anti-AMPK-alpha Cell Signaling Technology Cat#2532; RRID: AB_330331

Rabbit monoclonal anti-phospho-AMPK-alpha (Thr172)

(clone 40H9)

Cell Signaling Technology Cat#2535; RRID: AB_331250

Rabbit polyclonal anti-Annexin-I Invitrogen Cat#71-3400; RRID: AB_2533983

Mouse monoclonal anti-Annexin-VII (clone 5) BD Biosciences Cat#610668; RRID: AB_397995

Rabbit monoclonal anti-AR (clone EP670Y) Epitomics Cat#1852-1; RRID: AB_764443

Mouse monoclonal anti-B-Raf (clone F-7) Santa Cruz Cat#sc-5284; RRID: AB_626760

Rabbit polyclonal anti-phospho-Bad (Ser112) Cell Signaling Technology Cat#9291; RRID: AB_331418

Rabbit monoclonal anti-BAK (clone Y164) Epitomics Cat#1542-1; RRID: AB_562051

Rabbit polyclonal anti-BAX Cell Signaling Technology Cat#2772; RRID: AB_10695870

Mouse monoclonal anti-BCL-2 Dako Cat#M0887; RRID: AB_2064429

Rabbit monoclonal anti-Bcl-X (clone E18) Epitomics Cat#1018-1; RRID: AB_289586

Rabbit polyclonal anti-Bcl-xL Cell Signaling Technology Cat#2762; RRID: AB_10694844

Goat polyclonal anti-Beclin (clone D-18) Santa Cruz Cat#sc-10086; RRID: AB_2259076

Rabbit polyclonal anti-beta-Catenin Cell Signaling Technology Cat#9562; RRID: AB_331149

Rabbit monoclonal anti-BID (clone Y8) Epitomics Cat#1008-1; RRID: AB_365478

Rabbit monoclonal anti-BIM (clone Y36) Epitomics Cat#1036-1; RRID: AB_347632

Rabbit polyclonal anti-phospho-c-Jun (Ser73) Cell Signaling Technology Cat#9164; RRID: AB_330893

Rabbit monoclonal anti-c-KIT (clone YR145) Epitomics Cat#1522-1; RRID: AB_731513

Mouse monoclonal anti-c-Met (clone 25H2) Cell Signaling Technology Cat#3127; RRID: AB_2181554

Rabbit monoclonal anti-phospho-c-Met (Tyr1234/1235)

(clone 3D7)

Cell Signaling Technology Cat#3129; RRID: AB_561175

Rabbit polyclonal anti-c-Myc Cell Signaling Technology Cat#9402; RRID: AB_10693752

Rabbit polyclonal anti-c-Myc (clone N-262) Santa Cruz Cat#sc-764; RRID: AB_631276

Rabbit monoclonal anti-c-Raf (clone AM223) Millipore Cat#05-739; RRID: AB_309953

Rabbit monoclonal anti-phospho-c-Raf (Ser338) (clone 56A6) Cell Signaling Technology Cat#9427; RRID: AB_2067317

(Continued on next page)
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Rabbit monoclonal anti-Caspase-3- (Active) (clone E83-77) Epitomics Cat#1476-1; RRID: AB_562063

Rabbit polyclonal anti-Caspase-7 (cleaved D198) Cell Signaling Technology Cat#9491; RRID: AB_2068144

Rabbit polyclonal anti-Caspase-9 (cleaved D330) Cell Signaling Technology Cat#9501; RRID: AB_331424

Rabbit polyclonal anti-Caveolin-1 Cell Signaling Technology Cat#3238; RRID: AB_10699017

Mouse monoclonal anti-CD31 Dako Cat#M0823; RRID: AB_2114471

Mouse monoclonal anti-CD49B (clone 2) BD Biosciences Cat#611016; RRID: AB_398329

Rabbit polyclonal anti-CDK1 Cell Signaling Technology Cat#9112; RRID: AB_10693432

Rabbit polyclonal anti-Chk1 Cell Signaling Technology Cat#2345; RRID: AB_10693648

Rabbit monoclonal anti-phospho-Chk1 (Ser345)

(clone 133D3)

Cell Signaling Technology Cat#2348; RRID: AB_2080326

Mouse monoclonal anti-Chk2 (clone 1C12) Cell Signaling Technology Cat#3440; RRID: AB_2229490

Rabbit monoclonal anti-phospho-Chk2 (Thr68)

(clone C13C1)

Cell Signaling Technology Cat#2197; RRID: AB_2080501

Rabbit polyclonal anti-cIAP-1/HIAP-2 Millipore Cat#07-759; RRID: AB_11212879

Rabbit polyclonal anti-Claudin-7 Novus Biologicals Cat#NB100-91714; RRID: AB_1216502

Rabbit polyclonal anti-Collagen-VI (clone H-200) Santa Cruz Cat#SC-20649; RRID: AB_2083098

Rabbit monoclonal anti-COX-2 (clone EP1978Y) Epitomics Cat#2169-1; RRID: AB_991710

Rabbit monoclonal anti-Cyclin-B1 (clone Y106) Epitomics Cat#1495-1; RRID: AB_562272

Rabbit polyclonal anti-Cyclin-D1 (clone M-20) Santa Cruz Cat#sc-718; RRID: AB_2070436

Mouse monoclonal anti-Cyclin-E1 (clone HE12) Santa Cruz Cat#sc-247; RRID: AB_627357

Rabbit monoclonal anti-DJ-1/PARK7 (clone EP2815Y) Abcam Cat#ab76008; RRID: AB_1310549

Rabbit polyclonal anti-Dvl3 Cell Signaling Technology Cat#3218; RRID: AB_10694060

Rabbit polyclonal anti-E-Cadherin Cell Signaling Technology Cat#4065; RRID: AB_2076803

Rabbit monoclonal anti-E-Cadherin (clone 24E10) Cell Signaling Technology Cat#3195; RRID: AB_10694492

Rabbit polyclonal anti-eEF2 Cell Signaling Technology Cat#2332; RRID: AB_10693546

Rabbit polyclonal anti-eEF2K Cell Signaling Technology Cat#3692; RRID: AB_10694413

Rabbit polyclonal anti-EGFR (clone 1005) Santa Cruz Cat#SC-03; RRID: AB_631420

Rabbit polyclonal anti-EGFR Cell Signaling Technology Cat#2232; RRID: AB_823483

Rabbit polyclonal anti-phospho-EGFR (Tyr1068) Cell Signaling Technology Cat#2234; RRID: AB_331701

Rabbit monoclonal anti-phospho-EGFR (Tyr1173) (E124) Epitomics Cat#1124; RRID: AB_344895

Rabbit polyclonal anti-phospho-EGFR_pY992 Cell Signaling Technology Cat#2235; RRID: AB_331709

Rabbit polyclonal anti-eIF4E Cell Signaling Technology Cat#9742; RRID: AB_823488

Rabbit polyclonal anti-eIF4G Cell Signaling Technology Cat#2498; RRID: AB_10692643

Rabbit monoclonal anti-ER-alpha (clone SP1) Lab Vision Cat#RM-9101-S; RRID: AB_149901

Rabbit monoclonal anti-phospho-ER-alpha (Ser118)

(clone E91)

Epitomics Cat#1091-1; RRID: AB_562111

Mouse monoclonal anti-ERCC1 (clone 8F1) Lab Vision Cat#MS-671-P0; RRID: AB_143360

Rabbit monoclonal anti-FAK (clone EP695Y) Epitomics Cat#1700-1; RRID: AB_562113

Rabbit monoclonal anti-Fibronectin (clone F14) Epitomics Cat#1574-1; RRID: AB_562115

Rabbit monoclonal anti-FoxM1 (clone D12D5) Cell Signaling Technology Cat#5436; RRID: AB_10692483

Rabbit polyclonal anti-FOXO3a Cell Signaling Technology Cat#9467; RRID: AB_10693643

Rabbit monoclonal anti-FOXO3a (clone 75D8) Cell Signaling Technology Cat#2497; RRID: AB_836876

Rabbit polyclonal anti-phospho-FOXO3a (Ser318/321) Cell Signaling Technology Cat#9465; RRID: AB_2106498

Rabbit monoclonal anti-Gab2 (clone 26B6) Cell Signaling Technology Cat#3239; RRID: AB_10698601

Mouse monoclonal anti-GATA3 (clone L50-823) BD Biosciences Cat#558686; RRID: AB_2108590

Mouse monoclonal anti-GSK3-alpha-beta (clone 0011-A) Santa Cruz Cat#sc-7291; RRID: AB_2279451

Rabbit polyclonal anti-phospho-GSK3-alpha-beta (Ser21/9) Cell Signaling Technology Cat#9331; RRID: AB_329830

Rabbit polyclonal anti-phospho-GSK3 (Ser9) Cell Signaling Technology Cat#9336; RRID: AB_331405
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Mouse monoclonal anti-HER2 Lab Vision Cat#MS-325-P1; RRID: AB_61444

Rabbit polyclonal anti-phospho-HER2 (Tyr1248) Upstate (Millipore) Cat#06-229; RRID: AB_310076

Rabbit polyclonal anti-HER3 (clone C-17) Santa Cruz Cat#sc-285; RRID: AB_2099723

Rabbit monoclonal anti-phospho-HER3 (Tyr1289)

(clone 21D3)

Cell Signaling Technology Cat#4791; RRID: AB_2099708

Rabbit polyclonal anti-IGF-1R-beta Cell Signaling Technology Cat#3027; RRID: AB_2122378

Rabbit polyclonal anti-IGFBP2 Cell Signaling Technology Cat#3922; RRID: AB_10691844

Goat polyclonal anti-INPP4B (clone N-20) Santa Cruz Cat#SC-12318; RRID: AB_2126126

Rabbit polyclonal anti-IRS1 Millipore Cat#06-248; RRID: AB_2127890

Rabbit monoclonal anti-phospho-JNK/SAPK

(Thr183/Tyr185) (clone 81E11)

Cell Signaling Technology Cat#4668; RRID: AB_823588

Rabbit polyclonal anti-JNK2 Cell Signaling Technology Cat#4672; RRID: AB_10695599

Mouse monoclonal anti-k-Ras (clone F234) Santa Cruz Cat#sc-30; RRID: AB_627865

Rabbit polyclonal anti-Lck Cell Signaling Technology Cat#2752; RRID: AB_10691548

Rabbit monoclonal anti-phospho-p44/42 MAPK (Erk1/2)

(Thr202/Tyr204) (clone 197G2)

Cell Signaling Technology Cat#4377; RRID: AB_331775

Rabbit monoclonal anti-MEK1 (clone Y77) Epitomics Cat#1235-1; RRID: AB_562310

Rabbit monoclonal anti-phospho-MEK1 (Ser217/221)

(clone 41G9)

Cell Signaling Technology Cat#9154; RRID: AB_2138017

Mouse monoclonal anti-MGMT (clone MT3.1) Millipore Cat#MAB16200; RRID: AB_2281919

Mouse monoclonal anti-MIG-6 Sigma-Aldrich Cat#WH0054206M1; RRID: AB_1841511

Rabbit monoclonal anti-Mre11 (clone 31H4) Cell Signaling Technology Cat#4847; RRID: AB_10693469

Mouse monoclonal anti-MSH2 (clone 3A2) Cell Signaling Technology Cat#2850; RRID: AB_2144797

Rabbit polyclonal anti-MSH6 Novus Biologicals Cat#22030002; RRID: AB_2266534

Rabbit monoclonal anti-mTOR (clone 7C10) Cell Signaling Technology Cat#2983; RRID: AB_2105622

Rabbit polyclonal anti-phospho-mTOR (Ser2448) Cell Signaling Technology Cat#2971; RRID: AB_330970

Rabbit polyclonal anti-MYH11 Novus Biologicals Cat#21370002; RRID: AB_2147162

Rabbit polyclonal anti-N-Cadherin Cell Signaling Technology Cat#4061; RRID: AB_10694647

Mouse monoclonal anti-N-Ras (clone F155) Santa Cruz Cat#sc-31; RRID: AB_628041

Rabbit polyclonal anti-phospho-NDRG1 (Thr346) Cell Signaling Technology Cat#3217; RRID: AB_2150174

Rabbit monoclonal anti-phospho-NF-kB-p65 (Ser536) Cell Signaling Technology Cat#3033; RRID: AB_331284

Rabbit polyclonal anti-NF2 SDI / Novus Cat#2271.00.02; RRID: AB_2298264

Rabbit monoclonal anti-Notch1 (clone C44H11) Cell Signaling Technology Cat#3268; RRID: AB_1264224

Rabbit polyclonal anti-Notch3 (clone M-134) Santa Cruz Cat#sc-5593; RRID: AB_2151246

Rabbit polyclonal anti-P-Cadherin Cell Signaling Technology Cat#2130; RRID: AB_10693468

Rabbit polyclonal anti-p21 (clone C-19) Santa Cruz Cat#sc-397; RRID: AB_632126

Rabbit monoclonal anti-p27/Kip1 (clone Y236) Epitomics Cat#1591-1; RRID: AB_562357

Rabbit polyclonal anti-phospho-p27/Kip1 (Thr157) R&D Systems Cat#AF1555; RRID: AB_354857

Rabbit polyclonal anti-phospho-p27/KIP 1 (Thr198) Abcam Cat#ab64949; RRID: AB_1142099

Rabbit polyclonal anti-p38 MAPK Cell Signaling Technology Cat#9212; RRID: AB_330713

Rabbit polyclonal anti-phospho-p38 MAPK (Thr180/Tyr182) Cell Signaling Technology Cat#9211; RRID: AB_331641

Rabbit polyclonal anti-p53 Cell Signaling Technology Cat#9282; RRID: AB_10693944

Rabbit monoclonal anti-p70S6K (clone E343) Epitomics Cat#1494-1; RRID: AB_562325

Rabbit polyclonal anti-phospho-p70S6K (Thr389) Cell Signaling Technology Cat#9205; RRID: AB_330944

Rabbit polyclonal anti-phospho-p90RSK (Thr359/Ser363) Cell Signaling Technology Cat#9344; RRID: AB_331650

Mouse monoclonal anti-PARP (cleaved D214) (clone 19F4) Cell Signaling Technology Cat#9546; RRID: AB_2160593

Rabbit monoclonal anti-Paxillin (clone Y113) Epitomics Cat#1500-1; RRID: AB_562188

Mouse monoclonal anti-PCNA (clone PC10) Abcam Cat#ab29; RRID: AB_303394
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Rabbit polyclonal anti-PDCD4 Rockland Cat#600-401-965; RRID: AB_828370

Rabbit polyclonal anti-PDK1 Cell Signaling Technology Cat#3062; RRID: AB_10695863

Rabbit polyclonal anti-phospho-PDK1 (Ser241) Cell Signaling Technology Cat#3061; RRID: AB_2161311

Rabbit polyclonal anti-PEA15 Cell Signaling Technology Cat#2780; RRID: AB_2268149

Rabbit polyclonal anti-phospho-PEA15 (Ser116) Invitrogen Cat#44-836G; RRID: AB_2533775

Rabbit polyclonal anti-PI3K-p110-alpha Cell Signaling Technology Cat#4255; RRID: AB_10695395

Rabbit polyclonal anti-PI3K_p85 Millipore Cat#06-195; RRID: AB_310069

Mouse monoclonal anti-PKC-alpha (clone M4) Millipore Cat#05-154; RRID: AB_2284233

Rabbit polyclonal anti-phospho-PKC-alpha (Ser657) Millipore Cat#06-822; RRID: AB_310258

Rabbit polyclonal anti-phospho-PKC-delta (Ser664) Millipore Cat#07-875; RRID: AB_568868

Rabbit polyclonal anti-phospho-PKC-pan-betaII (Ser660) Cell Signaling Technology Cat#9371; RRID: AB_2168219

Rabbit monoclonal anti-PR (clone YR85) Epitomics Cat#1483-1; RRID: AB_562201

Rabbit polyclonal anti-phospho-PRAS40 (Thr246) Biosource Cat#441100G; RRID: AB_2533573

Rabbit polyclonal anti-PTCH SDI Cat#21130002; RRID: AB_876276

Rabbit polyclonal anti-PTEN Cell Signaling Technology Cat#9552; RRID: AB_10694066

Rabbit polyclonal anti-Rab11 Cell Signaling Technology Cat#3539; RRID: AB_2253210

Rabbit polyclonal anti-Rab25 Covance (custom antibody

services)

N/A

Mouse monoclonal anti-Rad50 (clone 13B3/2C6) Millipore Cat#05-525; RRID: AB_309782

Mouse polyclonal anti-Rad51 Chem Biotech Cat#na 71

Rabbit monoclonal anti-Raptor (24C12) Cell Signaling Technology Cat#2280; RRID: AB_10694695

Mouse monoclonal anti-Rb (clone 4H1) Cell Signaling Technology Cat#9309; RRID: AB_823629

Rabbit polyclonal anti-phospho-Rb (Ser807/811) Cell Signaling Technology Cat#9308; RRID: AB_331472

Rabbit polyclonal anti-RBM15 Novus Biologicals Cat#21390002; RRID: AB_2175759

Rabbit monoclonal anti-Rictor (clone 53A2) Cell Signaling Technology Cat#2114; RRID: AB_10694641

Rabbit monoclonal anti-phospho-Rictor (Thr1135)

(clone D30A3)

Cell Signaling Technology Cat#3806; RRID: AB_10557237

Rabbit polyclonal anti-phospho-S6 (Ser235/236) Cell Signaling Technology Cat#2211; RRID: AB_331679

Rabbit polyclonal anti-phospho-S6 (Ser240/244) Cell Signaling Technology Cat#2215; RRID: AB_331682

Mouse monoclonal anti-SCD1 (clone CD.E10) Santa Cruz Cat#sc-58420; RRID: AB_785599

Mouse monoclonal anti-SF2 (clone 96) Invitrogen Cat#32-4500; RRID: AB_2533079

Mouse monoclonal anti-Smac/Diablo Cell Signaling Technology Cat#2954; RRID: AB_10694396

Rabbit monoclonal anti-Smad1 (clone EP565Y) Epitomics Cat#1649-1; RRID: AB_562224

Rabbit monoclonal anti-Smad3 (clone EP568Y) Epitomics Cat#1735-1; RRID: AB_598188

Mouse polyclonal anti-Smad4 (clone B-8) Santa Cruz Cat#sc-7966; RRID: AB_627905

Mouse polyclonal anti-Snail (clone L70G2) Cell Signaling Technology Cat#3895; RRID: AB_2191759

Mouse monoclonal anti-Src (clone GD11) Millipore Cat#05-184; RRID: AB_2302631

Rabbit polyclonal anti-phospho-Src (Tyr416) Cell Signaling Technology Cat#2101; RRID: AB_331697

Rabbit polyclonal anti-phospho-Src (Tyr527) Cell Signaling Technology Cat#2105; RRID: AB_331034

Rabbit polyclonal anti-phospho-STAT3 (Tyr705) Cell Signaling Technology Cat#9131; RRID: AB_331586

Rabbit monoclonal anti-STAT5-alpha (E289) Epitomics Cat#1289-1; RRID: AB_562347

Rabbit monoclonal anti-Stathmin (clone EP1573Y) Epitomics Cat#1972-1; RRID: AB_991829

Mouse monoclonal anti-Syk (clone 4D10) Santa Cruz Cat#sc-1240; RRID: AB_628308

Mouse monoclonal anti-Tau (clone 5E2) Millipore Cat#05-348; RRID: AB_309687

Rabbit polyclonal anti-TAZ Cell Signaling Technology Cat#2149; RRID: AB_823657

Rabbit polyclonal anti-phospho-TAZ (Ser89) Santa Cruz Cat#sc-17610; RRID: AB_671263

Rabbit polyclonal anti-TIGAR Epitomics Cat#S1711; RRID: AB_10638379

Mouse monoclonal anti-Transglutaminase II Lab Vision Cat#MS-224-P1; RRID: AB_62205

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Rabbit polyclonal anti-TFRC Novus Biologicals Cat#22500002; RRID: AB_10004660

Rabbit polyclonal anti-TSC1 Cell Signaling Technology Cat#4906; RRID: AB_10695257

Rabbit monoclonal anti-TTF1 (clone EP1584Y) Epitomics Cat#2044-1; RRID: AB_1267367

Rabbit monoclonal anti-Tuberin (clone Y320) Epitomics Cat#1613-1; RRID: AB_562354

Rabbit polyclonal anti-VASP Cell Signaling Technology Cat#3112; RRID: AB_10693778

Rabbit monoclonal anti-VEGFR2 (clone 55B11) Cell Signaling Technology Cat#2479; RRID: AB_2212507

Mouse monoclonal anti-VHL (clone Ig32) BD Biosciences Cat#556347; RRID: AB_396376

Rabbit polyclonal anti-XIAP Cell Signaling Technology Cat#2042; RRID: AB_2214868

Rabbit polyclonal anti-XRCC1 Cell Signaling Technology Cat#2735; RRID: AB_2218471

Rabbit polyclonal anti-YAP (clone H-125) Santa Cruz Cat#sc-15407; RRID: AB_2273277

Rabbit polyclonal anti-phospho-YAP (Ser127) Cell Signaling Technology Cat#4911; RRID: AB_2218913

Rabbit polyclonal anti-YB-1 SDI / Novus Cat#1725.00.02; RRID: AB_936227

Rabbit monoclonal anti-phospho-YB-1 (Ser102)

(clone C34A2)

Cell Signaling Technology Cat#2900; RRID: AB_2219273

Mouse monoclonal anti-beta-Actin (clone C4) Santa Cruz Cat#SC-47778; RRID: AB_626632

Mouse monoclonal alpha-Tubulin (clone B-5-1-2) Invitrogen Cat#322500; RRID: AB_2533071

Mouse monoclonal anti-Hsp90 (clone 68) Transduction Laboratories Cat#H38220; RRID: AB_397798

HRP Donkey polyclonal anti-mouse Jackson Immunoresearch Cat#715-035-150; RRID: AB_2340770

HRP Donkey polyclonal anti-rabbit Jackson Immunoresearch Cat#711-035-152; RRID: AB_10015282

Chemicals, Peptides, and Recombinant Proteins

AZD8055 Selleck Cat#S1555

GSK690693 Selleck Cat#S1113

BEZ235 Selleck Cat#S1009

PD173074 Selleck Cat#S1264

GSK1120212 Selleck Cat#S2673

AZD7762 Selleck Cat#S1532

KX2-391 Selleck Cat#S2700

PF4708671 Selleck Cat#S2163

VX-702 Selleck Cat#S6005

DMEM GIBCO Cat#11965-118

RPMI GIBCO Cat#11875-119

Fetal Bovine Serum GIBCO Cat#10437

HGF GIBCO Cat#PHG0254

FGF-alpha GIBCO Cat#PHG0014

Insulin Sigma Cat#IO516-5ML

IGF GIBCO Cat#PHG0078

NRG-1 R&D Systems Cat#5898-R

EGF GIBCO Cat#PHG0311

cOmplete protease inhibitor cocktail Roche Applied Science Cat# 4693116001

phosSTOP phosphatase inhibitor cocktail Roche Applied Science Cat# 4906845001

Critical Commercial Assays

SuperSignal West Pico Chemiluminescent HRP

Substrate Kit

Thermofisher Scientific Cat#34080

Pierce BCA Protein Assay Thermofisher Scientific Cat#23225

Deposited Data

RPPA data This paper Data S1 and S2

Experimental Models: Cell Lines

Human: MCF7 cells ATCC: HTB-22 Cat#HTB-22; RRID:CVCL_0031

Human: UACC812 cells ATCC: CRL-1897 Cat#CRL-1897; RRID:CVCL_1781

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human: BT20 cells ATCC: HTB-19 Cat#HTB-19; RRID:CVCL_0178

Human: BT549 cells ATCC: HTB-122 Cat#HTB-122; RRID:CVCL_1092

Software and Algorithms

Scripts for: identification of changes under kinase

inhibition, network learning and assessment of network

learning performance

This paper (see

STAR Methods for details)

https://github.com/Steven-M-Hill/causal-

signaling-networks-CellSystems2016

MATLAB R2012a MathWorks, Inc. http://www.mathworks.com

DataRail Saez-Rodriguez et al., 2008 https://code.google.com/archive/

p/sbpipeline/

Cytoscape Shannon et al., 2003 http://www.cytoscape.org/

Joint Network Inference (modified version used in this paper;

script available on github, see above)

Oates et al., 2014 http://dx.doi.org/10.1214/14-AOAS761

Supercurve Coombes et al., 2012 http://bioinformatics.mdanderson.org/

Software/supercurve/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents and resources may be directed to, and will be fulfilled by, the Lead Contact Paul

T. Spellman (spellmap@ohsu.edu).

EXPERIMENTAL MODEL DETAILS

Breast epithelial cells in log-phase of growth were harvested, diluted in the appropriate media (DMEM (with phenol red) for

UACC812, BT20 and MCF7; RPMI (with phenol red) for BT549) containing 10% fetal bovine serum, and then seeded into

6 well plates at an optimized cell density (to give 60%–75% confluence at time of lysis). BT20 cells were plated at 230,000

cells/well; BT549 cells were plated at 175,000 cells/well; MCF7 cells were plated at 215,000 cells/well; and UACC812 cells

were plated at 510,000 cells/well. After 24 hr of growth at 37�C and 5% CO2 in complete medium, cells were synchronized

by incubating with serum-free medium for an additional 24 hr (serum starvation was also necessary to control the presence

of stimuli in the medium). The medium was then exchanged with fresh serum-free medium containing either: 15nM AZD8055,

50nM GSK690693, 50nM BEZ235, 150nM PD173074, 10nM GSK1120212 in combination with 50nM GSK690693, or vehicle

alone (0.05% DMSO) and incubated for two hours prior to stimulation. Cells were then either harvested (0 time point) or stim-

ulated by addition of 200 mL per well of 10X stimulus (either PBS, fetal bovine serum, 100 ng/mL EGF, 200ng/mL IGF1, 100nM

insulin, 200ng/mL FGF1, 1 mg/mL NRG1, or 500 ng/mL HGF) for 0, 5, 15, 30 or 60 min, or 2, 4, 12, 24, 48 or 72 hr prior to protein

harvest.

All cell lines have been authenticated by performing STR analysis and matching to reference STR profiles at 15 different loci. STR

analysis was performed by Genetica Cell Line Testing.

METHOD DETAILS

Preparation of Cells for RPPA Analysis
Cells were grown as described above, then washed twice with PBS and lysed by adding lysis buffer obtained from MD Anderson

Functional Proteomics RPPA Core Facility (Houston, Texas; lysis buffer comprised 1% Triton X-100, 50mM HEPES,

pH 7.4, 150mM NaCl, 1.5mM MgCl2, 1mM EGTA, 100mM NaF, 10mM Na pyrophosphate, 1mM Na3VO4, 10% glycerol; prote-

ase and phosphatase inhibitors were freshly added on the day of the experiment). Volume of lysis buffer used was optimized for

each cell line (to ensure lysates were not too dense for the BCA assay; see below) and varied between 50 mL and 100 mL. Lysates

were collected by scraping after 20 min incubation on ice. Lysates were spun at 4�C in a tabletop centrifuge at 15,000 RPM for

10 min and soluble proteins contained in the supernatant were collected. Protein concentration was determined by the Pierce

BCA Protein Assay according to manufacturer’s protocol. Protein was then diluted to 1 mg/mL and 30 mL of the diluted lysate

was mixed with 10 mL 4X SDS sample buffer (obtained from MD Anderson Functional Proteomics RPPA Core Facility; comprised

40% Glycerol, 8% SDS, 0.25M Tris-HCL, pH 6.8; 10% v/v 2-mercaptoethanol was added fresh) and boiled for 5 min prior to

freezing and shipment to MD Anderson Cancer Center Functional Proteomics RPPA Core Facility for RPPA analysis (Tibes

et al., 2006).
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RPPA Methodology
RPPA methodology has been described previously (see e.g., Akbani et al., 2014); an outline is also provided below. Lysates were

diluted in five two-fold serial dilutions with lysis buffer. An Aushon Biosystems 2470 arrayer (Burlington, MA) was used to print

1056 samples and control lysates on nitrocellulose-coated slides (Grace Bio-Labs). Each slide was probed with a primary antibody

and a biotin-conjugated secondary antibody. Antibodies go through a validation process as previously described (Hennessy et al.,

2010) to assess specificity, quantification and dynamic range. Each of the 183 primary antibodies was assigned a label based on this

validation process (at the time the assay was performed): ‘‘validated,’’ ‘‘use with caution’’ or ‘‘under evaluation’’ (see Table S1). Sam-

ples were split across three batches and some antibodies were used only in a subset of these batches (Table S1). A DakoCytomation-

catalyzed system and DAB colorimetric reaction was used to capture signal. Following scanning of slides, spot intensities were

analyzed and quantified using Microvigene software (VigeneTech). The EC50 values of the proteins in each dilution series were esti-

mated using the SuperCurve software (Coombes et al., 2012), available at http://bioinformatics.mdanderson.org/Software/

supercurve/. This uses the non-parametric, monotone increasing B-spline model (Hu et al., 2007) to fit a single curve (‘‘supercurve’’)

using all samples on a slide, with signal intensity as the response variable and dilution step as the independent variable. The fitted

curve is plotted with the signal intensities on the y axis and the log2 protein concentrations on the x axis for diagnostic purposes.

A quality control (QC) metric, between zero and one was calculated for each slide (Coombes et al., 2012) and slides with values

less than 0.8 were excluded. Within each batch, measurements were normalized for protein loading by median centering across

antibodies (Liu et al., 2014; Li et al., 2013). This normalization process, performed on log2 concentrations, comprised the following

steps:

1. For each antibody, calculate the median across samples and subtract from each value (i.e., median-center each antibody).

2. For each sample, calculate the median across antibodies to obtain a correction factor (CF).

3. For each sample, take the original log2 concentration values and subtract the corresponding CF (from step 2).
Normalized values, on a linear scale, are provided in Data S1.
Western Blot Analysis
Cells were grown as described above. For the novel edge validations in Figure 6, additional inhibitors were used to generate ly-

sates following the protocol laid out above. The inhibitors, all used at 1 mM, were AZD7762, KX2-391, PF4708671, and VX-702

(see Figure 6 for targets). In experiments designed to test the range of concentrations that were effective, 1 mM was able to

trigger changes in the phosphorylation of proteins downstream of the inhibitor targets. Lysates were harvested 15 min after stim-

ulation and protein concentrations quantified as described above. Denatured lysates were separated by PAGE on 4%–12% Bis-

Tris gradient gels (Invitrogen) along with Precision Plus Protein Standards (Bio-Rad) using MOPS SDS NuPAGE Running Buffer

(Invitrogen) and NuPAGE LDS Sample Buffer (Invitrogen) on ice at 200 V for 45 min. Gels were transferred to immobilin-FL PVDF

membranes (Millipore) using NuPAGE Transfer Buffer (Invitrogen) on ice at 30 V for 1.5 hr before being washed 3x 5 min. with 5%

Tween-TBS (TTBS, Amresco & Invitrogen) at room temperature (RT) with agitation and blocked with 5% BSA (Sigma) in TTBS

for 1 hr at RT with agitation. Blots were again washed 3x 5 min in TTBS at RT with agitation before being incubated in primary

antibody in 5% BSA in TTBS overnight at 4C with agitation. Blots were washed 3x for 5 min at RT with agitation and then trans-

ferred to HRP-conjugated secondary antibody in 5% BSA in TTBS and incubated at RT for 1.5 hr. See Table S5 for primary

antibodies and HRP-conjugated secondary antibodies used in western blot validations. Blots were washed again as previ-

ously described and visualized using SuperSignal West Pico Chemiluminescent HRP Substrate Kit (Thermo Scientific) and

CL-X Posure Film (Thermo Scientific) and changes in protein abundance under inhibition were determined by visual inspection

of exposed film.

Quality Control and Preprocessing of RPPA Data
Batch Normalization Procedure for Cell Line UACC812

The UACC812 data were split across two RPPA experiments with each batch containing different inhibitors (BEZ235, PD173074 and

GSK690693&GSK1120212 in one batch; AZD8055 and GSK690693 in the other). DMSO control samples were common to both

batches. The two batches were combined and normalized to obtain a single dataset for UACC812.

The steps of the batch normalization procedure were as follows:

1. Any antibodies not included in both batches were removed.

For each antibody, perform steps 2 and 3 below.

2. Using log2-transformed data (after normalization for protein loading; see above), themean and standard deviation of the DMSO

samples in each batch were calculated, giving values (m1, s1) and (m2, s2) for batch 1 and batch 2 respectively. Note that, for

each batch, there are 16 replicates for DMSO, 0min samples (all other DMSO conditions consist of a single replicate). These

16 replicates were averaged prior to calculation of mean values and standard deviations.
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3. All samples inbatch2 (for thegivenantibody)were thenscaledandcenteredso that themeanandstandarddeviationof thebatch

2 DMSO samples agreed with the corresponding batch 1 quantities (m1, s1). That is, a sample in batch 2 with value x became
m1 +
s1ðx � m2Þ

s2

:

This scaling and centering was applied to each individual replicate and not to replicate-averaged data.

4. The two batches were then combined to get a single dataset for UACC812.

Data for the two batches and the final normalized dataset are provided in Data S1 on a linear scale.

Samples Excluded from Analyses

Samples identified as outliers were excluded from our analyses. These samples were identified using the following criteria:

d Normalization for protein loading resulted in a correction factor (CF) for each sample (see above). Samples with CF > 2.5 or

CF < 0.25 were regarded as outliers.

d Variance across all antibodies was calculated for each sample. Values greater than 40 were regarded as outliers.

d We used the replicates at time t = 0 to calculate the signal-to-noise ratio (SNR) for each cell line and phosphoprotein antibody

under each inhibitor (mean of replicates divided by standard deviation of replicates). The mean across all calculated SNRs was

10.68 (s.d. = 5.8). SNR values less than 1 were investigated further to determine whether the poor SNR was caused by outlier

replicates.

For cell line UACC812, these criteria were applied to the batch-normalized dataset.

In addition to the above, data for the combination of inhibitors GSK690693 & GSK1120212 (AKTi & MEKi) for cell lines BT549

(all stimuli) and BT20 (PBS and NRG1 stimuli only) were excluded since none of the expected effects of MEKi were observed in these

samples.

All samples excluded from analyses are shown in Table S6 and also indicated in the data files in Data S1.

Antibodies Included in Analyses

To facilitate comparisons between cell lines, the analyses presented here focused on the set of phosphoprotein antibodies common

to all four lines. This set contained two highly correlated pairs of antibodies (r > 0.9 for all cell lines), consisting of phosphoforms of the

same protein: GSK3ab_pS21_pS9, GSK3_pS9 and S6_pS235_S236, S6_pS240_S244. Since highly correlated variables can lead to

a reduction in the utility of network inference results, only one antibody out of each pair was included in analyses, resulting in a final set

of 35 phosphoprotein antibodies. A full list of antibodies can be found in Table S1, where the 35 phosphoproteins included in the

analyses are also indicated.

Final Preprocessing Steps

Data were log2 transformed and replicates (only present for t = 0 samples and some DMSO samples) were averaged. Prior to input

into our network inference pipeline, imputation was performed for missing data by linear interpolation of adjacent time points.

Identification of Changes Under Kinase Inhibition
We used a procedure centered on paired t tests to determine which phosphoproteins show a salient change in abundance under

each kinase inhibitor. Details are described in Hill et al. (2016), but also outlined below for completeness.

For each phosphoprotein, inhibitor regime and (cell line, stimulus) context, a paired t test was used to assess whether mean phos-

phoprotein abundance under DMSO control is significantly different to mean abundance under the inhibitor regime (mean values

calculated over seven time points). As discussed above, some phosphoproteins show a clear response to the stimulus under

DMSO control, with abundance increasing and then decreasing over time (a ‘‘peak’’ shape), while others show a less clear response

due to signal already being present prior to stimulus. For phosphoproteins falling into the former category (according to a heuristic),

paired t tests were repeated, but this time restricted to intermediate time points within the peak. This focuses on the portion of the

time course where an inhibition effect, if present, should be seen. The p-value from the repeated test was retained if smaller than the

original p-value. For each (cell line, stimulus) context and inhibitor regime, the resulting set of p-values (one p-value for each phos-

phoprotein) were corrected for multiple testing using the adaptive linear step-up procedure for controlling the FDR (Benjamini et al.,

2006).

For each (cell line, stimulus) context, a phosphoprotein was deemed to show a salient change under a given inhibitor regime if two

conditions were satisfied. First, the corresponding FDR value had to be less than 5% and, second, the effect size (log2 ratio between

DMSO control and inhibitor conditions) had to be sufficiently large relative to replicate variation (see Figure S2). The latter condition is

an additional filter to remove small effects. Replicate variationwas quantified by calculating the pooled replicate standard deviation at

each time point of the DMSO and inhibitor time courses, and then averaging these values across time points. The phosphoproteins

satisfying these criteria are depicted in Figures 3B, 4A, and S1–S3. We note that the overall procedure is heuristic and that the FDR

values should not be interpreted formally.
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A phosphoprotein p showing a salient change under an inhibitor is consistent with a node targeted by the inhibitor having a causal

effect on the phosphoprotein. Since this effect can be direct or indirect, phosphoprotein p can be regarded as a descendant of the

inhibitor target node in the underlying signaling network. That is, there exists a directed path starting from the node targeted by the

inhibitor and ending at phosphoprotein p.

Network Learning
Networks were learned for each of the 32 (cell line, stimulus) contexts using dynamic Bayesian networks (DBNs), a type of probabi-

listic graphical model for time-course data (see e.g., Hill et al., 2012; Husmeier, 2003; Murphy, 2002). Specifically we used a recently

proposed variant called interventional DBNs or iDBNs (Spencer et al., 2015), that uses ideas from causal inference (Pearl, 2009;

Spirtes et al., 2000) to model interventions and thereby improve ability to infer causal relationships; model specification followed

Spencer et al. (2015). Although interested in learning context-specific networks, we expect a good proportion of agreement between

contexts. Therefore, rather than learn networks for each context separately, we used a recently developed joint learning approach to

solve all the problem instances together (Oates et al., 2014). A prior network was used (Figure S4); this was curated manually with

input from literature (Weinberg, 2013) and online resources. The extent to which context-specific networks are encouraged to agree

with each other and with the prior network is controlled by two parameters, l and h respectively, as described in detail in Oates et al.

(2014). These parameters were set (to l= 3 and h= 15) by considering a grid of possible values and selecting an option that provides a

reasonable, but conservative amount of agreement, allowing for discovery of context-specific edges that are not in the canonical

prior network. The network learning approach resulted in a score (edge probability) for each possible edge in each context-specific

network. The network estimates were robust to moderate data deletion and precise specification of the biological prior network and

its strength (Figure S6). Furthermore, the analyses were computationally efficient, requiring approximately 30 min to learn all

32 context-specific networks using serial computation on a standard personal computer (Intel i7-2640M 2.80GHz processor,

8GB RAM).

Assessing Performance of Causal Network Learning
The ability of our network learning approach to estimate context-specific causal networks was systematically assessed using a train

and test scheme proposed by Hill et al. (2016) in the context of the HPN-DREAM network inference challenge associated with the

RPPA data presented here. Due to factors specific to the challenge setting, Hill et al. (2016) used only a single iteration of train

and test. In contrast, we were able to perform several iterations, as described below.

In each iteration, the data were divided into two sets: (i) a test dataset, consisting of time courses for all 32 (cell line, stimulus) con-

texts under a single inhibitor regime, and (ii) a training dataset, consisting of time courses (again for all 32 contexts) for a subset of the

remaining five inhibitor regimes (Figure S5A). We refer to the single inhibitor regime in the test data as the test inhibitor (although note

that one regime contains more than one kinase inhibitor: GSK690693 & GSK1120212). Thirty-two context-specific networks were

learned on the training dataset and then each network was assessed as to how well it agreed with changes observed, for the

same context, under the test inhibitor (in the test dataset). For each test inhibitor, the set of phosphoproteins that show, for a given

context, a salient change in abundance were determined as described above (and shown in Figures 4A and S3), resulting in context-

specific ‘‘gold-standard’’ descendant sets. We then compared, for each context, predicted descendants of the test inhibitor target

node(s) according to the network inferred from training data, against the corresponding ‘‘gold-standard’’ descendant set. This re-

sulted in a number of correctly predicted descendants (true positives, TPs) and a number of incorrectly predicted descendants (false

positives, FPs). Our network learning approach outputs edge probabilities, from which a network can be obtained using a threshold

value. The TP and FP values were therefore a function of this threshold value, resulting in an ROC (receiver operating characteristic)

curve. Our final assessment metric was then the area under this curve (AUROC), which we calculated for each context and test in-

hibitor (Figure S5B). The statistical significance of the AUROC scores was determined using an empirical null distribution, generated

by calculating AUROC scores for sets of uniformly random edge probabilities.

The assessment procedure requires that nodes targeted by the test inhibitor are present in the network model so that their descen-

dants can be determined. Also, it is important that the training data only contains inhibitor regimes that target nodes which are not

also targeted by the test inhibitor. There were three train and test data splits that satisfied these criteria (while also maximizing the

sample size of the training dataset), and we assessed performance for all three (Figure S5B).

QUANTIFICATION AND STATISTICAL ANALYSIS

Replicates were averaged prior to carrying out statistical analysis and the time courses shown in Figures 3 and S1 were plotted using

replicate-averaged data.

The number of replicates were as follows: �16 replicates for samples at t = 0, except for UACC812, BT20 and MCF7 DMSO t = 0

samples which were replicated�32 times; 2 replicates for themajority of DMSO samples at t > 0, except for BT20 DMSO samples; all

other samples had a single replicate.

Details of statistical procedures are provided in the methods section above or in figure legends. Analyses were performed using

MATLAB R2012a software.
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DATA AND SOFTWARE AVAILABILITY

Software
Scripts for the computational and statistical analyses presented here are available at https://github.com/Steven-M-Hill/

causal-signaling-networks-CellSystems2016. These scripts include identification of changes under kinase inhibition, network

learning, and assessment of network learning performance.

Data Resources
RPPA data, including additional time points and antibodies that were not used in the analyses presented here, are provided in Data

S1. Time-course plots for all of the antibodies are provided in Data S2.

ADDITIONAL RESOURCES

HPN-DREAM network inference challenge associated with the RPPA data presented here: https://www.synapse.org/HPN_

DREAM_Network_Challenge.
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