8,339 research outputs found
Emergence of influential spreaders in modified rumor models
The burst in the use of online social networks over the last decade has
provided evidence that current rumor spreading models miss some fundamental
ingredients in order to reproduce how information is disseminated. In
particular, recent literature has revealed that these models fail to reproduce
the fact that some nodes in a network have an influential role when it comes to
spread a piece of information. In this work, we introduce two mechanisms with
the aim of filling the gap between theoretical and experimental results. The
first model introduces the assumption that spreaders are not always active
whereas the second model considers the possibility that an ignorant is not
interested in spreading the rumor. In both cases, results from numerical
simulations show a higher adhesion to real data than classical rumor spreading
models. Our results shed some light on the mechanisms underlying the spreading
of information and ideas in large social systems and pave the way for more
realistic diffusion models.Comment: 14 Pages, 6 figures, accepted for publication in Journal of
Statistical Physic
Darkness visible: reflections on underground ecology
1 Soil science and ecology have developed independently, making it difficult for ecologists to contribute to urgent current debates on the destruction of the global soil resource and its key role in the global carbon cycle. Soils are believed to be exceptionally biodiverse parts of ecosystems, a view confirmed by recent data from the UK Soil Biodiversity Programme at Sourhope, Scotland, where high diversity was a characteristic of small organisms, but not of larger ones. Explaining this difference requires knowledge that we currently lack about the basic biology and biogeography of micro-organisms. 2 It seems inherently plausible that the high levels of biological diversity in soil play some part in determining the ability of soils to undertake ecosystem-level processes, such as carbon and mineral cycling. However, we lack conceptual models to address this issue, and debate about the role of biodiversity in ecosystem processes has centred around the concept of functional redundancy, and has consequently been largely semantic. More precise construction of our experimental questions is needed to advance understanding. 3 These issues are well illustrated by the fungi that form arbuscular mycorrhizas, the Glomeromycota. This ancient symbiosis of plants and fungi is responsible for phosphate uptake in most land plants, and the phylum is generally held to be species-poor and non-specific, with most members readily colonizing any plant species. Molecular techniques have shown both those assumptions to be unsafe, raising questions about what factors have promoted diversification in these fungi. One source of this genetic diversity may be functional diversity. 4 Specificity of the mycorrhizal interaction between plants and fungi would have important ecosystem consequences. One example would be in the control of invasiveness in introduced plant species: surprisingly, naturalized plant species in Britain are disproportionately from mycorrhizal families, suggesting that these fungi may play a role in assisting invasion. 5 What emerges from an attempt to relate biodiversity and ecosystem processes in soil is our extraordinary ignorance about the organisms involved. There are fundamental questions that are now answerable with new techniques and sufficient will, such as how biodiverse are natural soils? Do microbes have biogeography? Are there rare or even endangered microbes
Services just for men? Insights from a national study of the well men services pilots.
Men continue to have a lower life expectancy in most countries compared to women. Explanations of this gendered health inequality tend to focus on male risk taking, unhealthy lifestyle choices and resistance to seeking help from health services. In the period 2005-2008 the Scottish Government funded a nationwide community health promotion programme aimed at improving men's health, called Well Men Service Pilots (henceforth WMS)
Predicting the public health benefit of vaccinating cattle against Escherichia coli O157
Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattleâhuman species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naĂŻve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the humanâanimal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases
Self-similar scaling and evolution in the galaxy cluster X-ray Luminosity-Temperature relation
We investigate the form and evolution of the X-ray luminosity-temperature
(LT) relation of a sample of 114 galaxy clusters observed with Chandra at
0.1<z<1.3. The clusters were divided into subsamples based on their X-ray
morphology or whether they host strong cool cores. We find that when the core
regions are excluded, the most relaxed clusters (or those with the strongest
cool cores) follow an LT relation with a slope that agrees well with simple
self-similar expectations. This is supported by an analysis of the gas density
profiles of the systems, which shows self-similar behaviour of the gas profiles
of the relaxed clusters outside the core regions. By comparing our data with
clusters in the REXCESS sample, which extends to lower masses, we find evidence
that the self-similar behaviour of even the most relaxed clusters breaks at
around 3.5keV. By contrast, the LT slopes of the subsamples of unrelaxed
systems (or those without strong cool cores) are significantly steeper than the
self-similar model, with lower mass systems appearing less luminous and higher
mass systems appearing more luminous than the self-similar relation. We argue
that these results are consistent with a model of non-gravitational energy
input in clusters that combines central heating with entropy enhancements from
merger shocks. Such enhancements could extend the impact of central energy
input to larger radii in unrelaxed clusters, as suggested by our data. We also
examine the evolution of the LT relation, and find that while the data appear
inconsistent with simple self-similar evolution, the differences can be
plausibly explained by selection bias, and thus we find no reason to rule out
self-similar evolution. We show that the fraction of cool core clusters in our
(non-representative) sample decreases at z>0.5 and discuss the effect of this
on measurements of the evolution in the LT relation.Comment: 21 pages, 15 figures. Submitted to MNRAS. Comments welcom
Quantum internet using code division multiple access
A crucial open problem in large-scale quantum networks is how to efficiently
transmit quantum data among many pairs of users via a common data-transmission
medium. We propose a solution by developing a quantum code division multiple
access (q-CDMA) approach in which quantum information is chaotically encoded to
spread its spectral content, and then decoded via chaos synchronization to
separate different sender-receiver pairs. In comparison to other existing
approaches, such as frequency division multiple access (FDMA), the proposed
q-CDMA can greatly increase the information rates per channel used, especially
for very noisy quantum channels.Comment: 29 pages, 6 figure
Catalog of Galactic Beta Cephei Stars
We present an extensive and up-to-date catalog of Galactic Beta Cephei stars.
This catalog is intended to give a comprehensive overview of observational
characteristics of all known Beta Cephei stars. 93 stars could be confirmed to
be Beta Cephei stars. For some stars we re-analyzed published data or conducted
our own analyses. 61 stars were rejected from the final Beta Cephei list, and
77 stars are suspected to be Beta Cephei stars. A list of critically selected
pulsation frequencies for confirmed Beta Cephei stars is also presented. We
analyze the Beta Cephei stars as a group, such as the distributions of their
spectral types, projected rotational velocities, radial velocities, pulsation
periods, and Galactic coordinates. We confirm that the majority of these stars
are multiperiodic pulsators. We show that, besides two exceptions, the Beta
Cephei stars with high pulsation amplitudes are slow rotators. We construct a
theoretical HR diagram that suggests that almost all 93 Beta Cephei stars are
MS objects. We discuss the observational boundaries of Beta Cephei pulsation
and their physical parameters. We corroborate that the excited pulsation modes
are near to the radial fundamental mode in frequency and we show that the mass
distribution of the stars peaks at 12 solar masses. We point out that the
theoretical instability strip of the Beta Cephei stars is filled neither at the
cool nor at the hot end and attempt to explain this observation
The asymmetric radio remnant of SN 1987A
We present seven years of radio observations of SN 1987A made with the
Australia Telescope Compact Array. At 1.4, 2.4, 4.8 and 8.6 GHz, the flux
density of the radio remnant has increased monotonically since emission was
redetected 1200 days after the explosion. On day 3200, the remnant was
expanding at 2800 +/- 400 km/s, which we interpret as indicating significant
deceleration of the fastest moving ejecta. Since day 1787 the spectral index
has remained constant at alpha = -0.95 +/- 0.04. These observations are all
consistent with the shock having encountered a denser, shocked, component of
the progenitor's stellar wind. At the current rate of expansion, the shock is
expected to encounter the inner optical ring in the year 2006 +/- 3.
Using super-resolution, we have also obtained 9 GHz images of the remnant
(resolution approx 0".5) at four epochs. The emission is distributed around the
rim of a near-circular shell, but has become increasingly asymmetric with time.
There are two "hotspots" to the east and west, aligned along the major axis of
the optical ring. This morphology is most likely indicative of an axisymmetric
circumstellar medium into which the shock is expanding, consistent with present
understanding of the progenitor star and its environment.Comment: 45 pages, LaTeX, including 15 PostScript figures. To appear in "The
Astrophysical Journal", volume 479 (20 Apr 1997
Holocene history of the 79塉N ice shelf reconstructed from epishelf lake and uplifted glaciomarine sediments
Acknowledgements This work was funded by a NERC standard grant (grant no. NE/N011228/1), and some radiocarbon analysis was funded by NEIF (grant NE/S011587/1; allocation number 2169.1118). We thank the Alfred Wegener Institute, particularly Angelika Humbert and Hicham Rafiq, for significant logistic support through the iGRIFF project. Additional support was provided by Station Nord (Jorgen Skafte), Nordlandair, Air Greenland, and the Joint Arctic Command. Naalakkersuisut (government of Greenland) provided scientific survey (VU-00121) and export (046/2017) licences for this work. Finally, we would like to thank our (Nanu Travel) field ranger Isak (and dog Ooni) for keeping us safe in the field and taking great pleasure in beating James A. Smith at cards. Financial support This research has been supported by the Natural Environment Research Council (grant no. NE/N011228/1).Peer reviewedPublisher PD
- âŠ