143 research outputs found

    Specification and guideline for technical aspects and scanning parameter settings of neonatal lung ultrasound examination

    Get PDF
    Lung ultrasound (LUS) is now widely used in the diagnosis and monitor of neonatal lung diseases.Nevertheless, in the published literatures,the LUS images may display a significant variation in technical execution,while scanning parameters may influence diagnostic accuracy.The inter- and intra-observer reliabilities of ultrasound exam have been extensively studied in general and in LUS.As expected,the reliability declines in the hands of novices when they perform the point-of-care ultrasound (POC US).Consequently,having appropriate guidelines regarding to technical aspects of neonatal LUS exam is very important especially because diagnosis is mainly based on interpretation of artifacts produced by the pleural line and the lungs.The present work aimed to create an instrument operation specification and parameter setting guidelines for neonatal LUS.Technical aspects and scanning parameter settings that allow for standardization in obtaining LUS images include (1)select a high-end equipment with high-frequency linear array transducer (12-14 MHz).(2)Choose preset suitable for lung examination or small organs.(3)Keep the probe perpendicular to the ribs or parallel to the intercostal space.(4)Set the scanning depth at 4-5 cm.(5)Set 1-2 focal zones and adjust them close to the pleural line.(6)Use fundamental frequency with speckle reduction 2-3 or similar techniques.(7)Turn off spatial compounding imaging.(8)Adjust the time-gain compensation to get uniform image from the near-to far-field

    Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are endogenously expressed noncoding RNAs with important biological and pathological functions. Although several studies have shown that microRNA-31 (miR-31) is obviously up-regulated in colorectal cancer (CRC), there is no study on the functional roles of miR-31 in CRC.</p> <p>Methods</p> <p>Anti-miR™ miRNA 31 inhibitor (anti-miR-31) is a sequence-specific and chemically modified oligonucleotide to specifically target and knockdown miR-31 molecule. The effect of anti-miR-31 transfection was investigated by real-time PCR. HCT-116<sup>p53+/+ </sup>and HCT-116<sup>p53-/-</sup>colon cancer cells were treated by anti-miR-31 with or without 5-fluorouracil (5-FU), cell proliferation was determined by MTT assay; apoptosis was detected by DAPI staining; cell cycle was evaluated by flow cytometry; colony formation, migration and invasion assays were performed to investigate the effect of suppression of miR-31 on the cell lines.</p> <p>Results</p> <p>Real-time PCR results showed that anti-miR-31 was efficiently introduced into the cells and reduced miR-31 levels to 44.1% in HCT-116<sup>p53+/+ </sup>and 67.8% in HCT-116<sup>p53-/-</sup>cell line (<it>p </it>= 0.042 and 0.046). MTT results showed that anti-miR-31 alone had no effect on the proliferation of HCT-116<sup>p53+/+ </sup>or HCT-116<sup>p53-/-</sup>. However, when combined with 5-FU, anti-miR-31 inhibited the proliferation of the two cell lines as early as 24 h after exposure to 5-FU (<it>p </it>= 0.038 and 0.044). Suppression of miR-31 caused a reduction of the migratory cells by nearly 50% compared with the negative control in both HCT-116<sup>p53+/+ </sup>and HCT-116<sup>p53-/-</sup>(<it>p </it>= 0.040 and 0.001). The invasive ability of the cells were increased by 8-fold in HCT-116<sup>p53+/+ </sup>and 2-fold in HCT-116<sup>p53-/- </sup>(<it>p </it>= 0.045 and 0.009). Suppression of miR-31 had no effect on cell cycle and colony formation (<it>p </it>> 0.05).</p> <p>Conclusions</p> <p>Suppression of miR-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells.</p

    A systematic review of grandparents’ influence on grandchildren’s cancer risk factors

    Get PDF
    Many lifestyle patterns are established when children are young. Research has focused on the potential role of parents as a risk factor for non communicable disease in children, but there is limited investigation of the role of other caregivers, such as grandparents. The aim of this review was to identify and synthesise evidence for any influence grandparents&rsquo; care practices may have on their grandchildren&rsquo;s long term cancer risk factors. A systematic review was carried out with searches across four databases (MEDLINE, Embase, Web of Science, PsycINFO) as well as searches of reference lists and citing articles, and Google Scholar. Search terms were based on six areas of risk that family care could potentially influence&ndash;weight, diet, physical activity, tobacco, alcohol and sun exposure. All study designs were included, as were studies that provided an indication of the interaction of grandparents with their grandchildren. Studies were excluded if grandparents were primary caregivers and if children had serious health conditions. Study quality was assessed using National Institute for Health and Care Excellence checklists. Grandparent impact was categorised as beneficial, adverse, mixed or as having no impact. Due to study heterogeneity a meta-analysis was not possible. Qualitative studies underwent a thematic synthesis of their results. Results from all included studies indicated that there was a sufficient evidence base for weight, diet, physical activity and tobacco studies to draw conclusions about grandparents&rsquo; influence. One study examined alcohol and no studies examined sun exposure. Evidence indicated that, overall, grandparents had an adverse impact on their grandchildren&rsquo;s cancer risk factors. The theoretical work in the included studies was limited. Theoretically underpinned interventions designed to reduce these risk factors must consider grandparents&rsquo; role, as well as parents&rsquo;, and be evaluated robustly to inform the evidence base further

    Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Bupleurum chinense </it>DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of <it>B. chinense</it>, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway.</p> <p>Results</p> <p>One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388). A <it>de novo </it>assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons), 12, 649 (52.6%) of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10). All unique sequences were compared with NCBI expressed sequence tags (ESTs) (237) and encoding sequences (44) from the <it>Bupleurum </it>genus, and with a Sanger-sequenced EST dataset (3, 111). The 23, 173 (96.4%) unique sequences obtained in the present study represent novel <it>Bupleurum </it>genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (<it>P450</it>s) and 102 glycosyltransferases (<it>GT</it>s) unique sequences were also found in the 454 dataset. Full length cDNAs of 7 <it>P450</it>s and 7 uridine diphosphate <it>GT</it>s (<it>UGT</it>s) were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two <it>P450</it>s and three <it>UGT</it>s were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with <it>β-AS </it>in methyl jasmonate-treated adventitious roots and on their similar expression patterns with <it>β-AS </it>in various <it>B. chinense </it>tissues.</p> <p>Conclusions</p> <p>A collection of high-quality ESTs for <it>B. chinense </it>obtained by 454 pyrosequencing is provided here for the first time. These data should aid further research on the functional genomics of <it>B. chinense </it>and other <it>Bupleurum </it>species. The candidate genes for enzymes involved in saikosaponin biosynthesis, especially the <it>P450</it>s and <it>UGT</it>s, that were revealed provide a substantial foundation for follow-up research on the metabolism and regulation of the saikosaponins.</p

    Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells.

    Get PDF
    Translational research in bone tissue engineering is essential for “bench to bedside” patient benefit. However, the ideal combination of stem cells and biomaterial scaffolds for bone repair/regeneration is still unclear. The aim of this study is to investigate the osteogenic capacity of a combination of poly(DL-lactic acid) (PDLLA) porous foams containing 5 wt% and 40 wt% of Bioglass particles with human adipose-derived stem cells (ADSCs) in vitro and in vivo. Live/dead fluorescent markers, confocal microscopy and scanning electron microscopy showed that PDLLA/Bioglass porous scaffolds supported ADSC attachment, growth and osteogenic differentiation, as confirmed by enhanced alkaline phosphatase (ALP) activity. Higher Bioglass content of the PDLLA foams increased ALP activity compared with the PDLLA only group. Extracellular matrix deposition after 8 weeks in the in vitro cultures was evident by Alcian blue/Sirius red staining. In vivo bone formation was assessed by using scaffold/ADSC constructs in diffusion chambers transplanted intraperitoneally into nude mice and recovered after 8 weeks. Histological and immunohistochemical assays indicated significant new bone formation in the 40 wt% and 5 wt% Bioglass constructs compared with the PDLLA only group. Thus, the combination of a well-developed biodegradable bioactive porous PDLLA/Bioglass composite scaffold with a high-potential stem cell source (human ADSCs) could be a promising approach for bone regeneration in a clinical setting

    The Role of Purported Mucoprotectants in Dealing with Irritable Bowel Syndrome, Functional Diarrhea, and Other Chronic Diarrheal Disorders in Adults

    Get PDF
    Chronic diarrhea is a frequent presenting symptom, both in primary care medicine and in specialized gastroenterology units. It is estimated that more than 5% of the global population suffers from chronic diarrhea. and that about 40% of these subjects are older than 60 years. The clinician is frequently faced with the need to decide which is the best therapeutic approach for these patients. While the origin of chronic diarrhea is diverse, impairment of intestinal barrier function, dysbiosis. and mucosal micro-inflammation are being increasingly recognized as underlying phenomena characterizing a variety of chronic diarrheal diseases. In addition to current pharmacological therapies, there is growing interest in alternative products such as mucoprotectants, which form a mucoadhesive film over the epithelium to reduce and protect against the development of altered intestinal permeability, dysbiosis, and mucosal micro-inflammation. This manuscript focuses on chronic diarrhea in adults, and we will review recent evidence on the ability of these natural compounds to improve symptoms associated with chronic diarrhea and to exert protective effects for the intestinal barrier
    corecore