4,901 research outputs found

    A systematic simulation methodology for LNG ship operations in port waters: a case study in Meizhou Bay

    Get PDF
    With the increment for liquefied natural gas (LNG) demand, LNG carriers are becoming larger in size. The operational safety of the carriers and the associated terminals is increasingly attracting attention. This is particularly true when a large LNG vessel approaches a terminal, requiring a detailed investigation of ship handling in port waters, especially in certain unusual cases. A full mission simulator provides an effective tool for research and training in operations of both port terminals and ships. This paper presents an experimental design methodology of the full mission simulation. The details as to how the simulation is achieved are described, and the simulation strategies applicable to LNG ships are specified. A typical case study is used to demonstrate and verify the proposed design methodology. The proposed methodology of the full mission simulation provides guidance for port safety research, risk evaluation and seafarer training. © 2017 Institute of Marine Engineering, Science & Technolog

    Multi-seeded melt growth (MSMG) of bulk Y-Ba-Cu-O using thin-film seeds

    Full text link
    Y-Ba-Cu-O (YBCO) and Sm-Ba-Cu-O (SmBCO) thin films have been used for the first time as heterogeneous seeds to multi-seed successfully the melt growth of bulk YBCO in a multi-seeded melt growth (MSMG) process. The use of thin film seeds, which may be prepared with highly controlled orientation (i.e. with a well-defined a-b plane and precisely known a-direction), is based on their superheating properties and reduces significantly contamination of the bulk sample by the seed material. A variety of grain boundaries were obtained by varying the angle between the seeds. Microstructural studies indicate that the extent of residual melt deposited at the grain boundary decreases with increasing grain boundary contact angle. It is established that the growth front proceeds continuously at the (110)/(110) grain boundary without trapping liquid, which leads to the formation of a clean grain boundary

    Ram pressure feeding super-massive black holes

    Get PDF
    When supermassive black holes at the center of galaxies accrete matter (usually gas), they give rise to highly energetic phenomena named Active Galactic Nuclei (AGN). A number of physical processes have been proposed to account for the funneling of gas towards the galaxy centers to feed the AGN. There are also several physical processes that can strip gas from a galaxy, and one of them is ram pressure stripping in galaxy clusters due to the hot and dense gas filling the space between galaxies. We report the discovery of a strong connection between severe ram pressure stripping and the presence of AGN activity. Searching in galaxy clusters at low redshift, we have selected the most extreme examples of jellyfish galaxies, which are galaxies with long tentacles of material extending for dozens of kpc beyond the galaxy disk. Using the MUSE spectrograph on the ESO Very Large Telescope, we find that 6 out of the 7 galaxies of this sample host a central AGN, and two of them also have galactic-scale AGN ionization cones. The high incidence of AGN among the most striking jellyfishes may be due to ram pressure causing gas to flow towards the center and triggering the AGN activity, or to an enhancement of the stripping caused by AGN energy injection, or both. Our analysis of the galaxy position and velocity relative to the cluster strongly supports the first hypothesis, and puts forward ram pressure as another, yet unforeseen, possible mechanism for feeding the central supermassive black hole with gas.Comment: published in Nature, Vol.548, Number 7667, pag.30

    A massive proto-cluster of galaxies at a redshift of z {\approx} 5.3

    Get PDF
    Massive clusters of galaxies have been found as early as 3.9 Billion years (z=1.62) after the Big Bang containing stars that formed at even earlier epochs. Cosmological simulations using the current cold dark matter paradigm predict these systems should descend from "proto-clusters" - early over-densities of massive galaxies that merge hierarchically to form a cluster. These proto-cluster regions themselves are built-up hierarchically and so are expected to contain extremely massive galaxies which can be observed as luminous quasars and starbursts. However, observational evidence for this scenario is sparse due to the fact that high-redshift proto-clusters are rare and difficult to observe. Here we report a proto-cluster region 1 billion years (z=5.3) after the Big Bang. This cluster of massive galaxies extends over >13 Mega-parsecs, contains a luminous quasar as well as a system rich in molecular gas. These massive galaxies place a lower limit of >4x10^11 solar masses of dark and luminous matter in this region consistent with that expected from cosmological simulations for the earliest galaxy clusters.Comment: Accepted to Nature, 16 Pages, 6 figure

    Effect of Prestrain on Hydrogen-Induced Delayed Cracking for Medium Mn Steels

    Get PDF
    Medium Mn steels are a class of the new-generation ultra-high-strength materials used in automotives. However, despite excellent ductility, they may suffer from delayed cracking and thus cause serious concerns. In this study, several medium Mn steels were tested with different prestrain and hydrogen charging conditions. The interaction and synergistic effects of prestrain and hydrogen content on hydrogen-induced delayed cracking behavior are investigated. The threshold stress of hydrogen-induced cracking (HIC) decreased during dynamic hydrogen charging under a constant load. In the process of dynamic hydrogen charging, for M7B and M10B steels, the normalized stress intensity factor σ/σb and the corresponding threshold stress σHIC decreased sharply as prestrain increased. This is because the volume fraction of retained austenite decreased with an increase in prestrain. Similarly, σHIC was reduced and the critical hydrogen content dropped drastically with increasing prestrain. For M7C, the influence of prestrain on threshold stress and hydrogen concentration was less than that of M7B. This is because the different treatment processes leads to a different stability of the retained austenite. By observing the SEM fractographs, the fracture surface of medium Mn steels showed different fracture characteristics, such as dimple fractures and intergranular and transgranular modes

    Preparation, structural characterisation and antibacterial properties of Ga-doped sol-gel phosphate-based glass

    Get PDF
    A sol-gel preparation of Ga-doped phosphate-based glass with potential application in antimicrobial devices has been developed. Samples of composition (CaO)(0.30)(Na2O)(0.20-x) (Ga2O3) (x) (P2O5)(0.50) where x = 0 and 0.03 were prepared, and the structure and properties of the gallium-doped sample compared with those of the sample containing no gallium. Analysis of the P-31 MAS NMR data demonstrated that addition of gallium to the sol-gel reaction increases the connectivity of the phosphate network at the expense of hydroxyl groups. This premise is supported by the results of the elemental analysis, which showed that the gallium-free sample contains significantly more hydrogen and by FTIR spectroscopy, which revealed a higher concentration of -OH groups in that sample. Ga K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure data revealed that the gallium ions are coordinated by six oxygen atoms. In agreement with the X-ray absorption data, the high-energy XRD results also suggest that the Ga3+ ions are octahedrally coordinated with respect to oxygen. Antimicrobial studies demonstrated that the sample containing Ga3+ ions had significant activity against Staphylococcus aureus compared to the control

    The scale of population structure in Arabidopsis thaliana

    Get PDF
    The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales

    Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Get PDF
    CD4(+) T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i) that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+) cells, and (ii) that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+) compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+) T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p) and disappearance (d*) rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul) participated. CCR5-expression defined a CD4(+) subpopulation of predominantly CD45R0(+) memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+) vs CCR5(-); healthy controls; P<0.01). Conversely, CXCR4 expression defined CD4(+) T-cells (predominantly CD45RA(+) naive cells) with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+)CD45R0(+)CD4(+) memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05), naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9) or X4-tropic (n = 4). Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively). Our data are most consistent with models in which CD4(+) T-cell loss is primarily driven by non-specific immune activation

    Emergent dynamic chirality in a thermally driven artificial spin ratchet

    Get PDF
    Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice1, 2 can lead to specific collective behaviour3, including emergent magnetic monopoles4, 5, charge screening6, 7 and transport8, 9, as well as magnonic response10, 11, 12. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet13, 14, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells
    • …
    corecore