31 research outputs found

    Prediction of Preterm Deliveries from EHG Signals Using Machine Learning

    Get PDF
    There has been some improvement in the treatment of preterm infants, which has helped to increase their chance of survival. However, the rate of premature births is still globally increasing. As a result, this group of infants are most at risk of developing severe medical conditions that can affect the respiratory, gastrointestinal, immune, central nervous, auditory and visual systems. In extreme cases, this can also lead to long-term conditions, such as cerebral palsy, mental retardation, learning difficulties, including poor health and growth. In the US alone, the societal and economic cost of preterm births, in 2005, was estimated to be $26.2 billion, per annum. In the UK, this value was close to £2.95 billion, in 2009. Many believe that a better understanding of why preterm births occur, and a strategic focus on prevention, will help to improve the health of children and reduce healthcare costs. At present, most methods of preterm birth prediction are subjective. However, a strong body of evidence suggests the analysis of uterine electrical signals (Electrohysterography), could provide a viable way of diagnosing true labour and predict preterm deliveries. Most Electrohysterography studies focus on true labour detection during the final seven days, before labour. The challenge is to utilise Electrohysterography techniques to predict preterm delivery earlier in the pregnancy. This paper explores this idea further and presents a supervised machine learning approach that classifies term and preterm records, using an open source dataset containing 300 records (38 preterm and 262 term). The synthetic minority oversampling technique is used to oversample the minority preterm class, and cross validation techniques, are used to evaluate the dataset against other similar studies. Our approach shows an improvement on existing studies with 96% sensitivity, 90% specificity, and a 95% area under the curve value with 8% global error using the polynomial classifier

    Optimizing care in osteoporosis: The Canadian quality circle project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the Osteoporosis Canada 2002 Canadian guidelines provided evidence based strategies in preventing, diagnosing, and managing this condition, publication and distribution of guidelines have not, in and of themselves, been shown to alter physicians clinical approaches. We hypothesize that primary care physicians enrolled in the Quality Circle project would change their patient management of osteoporosis in terms of awareness of osteoporosis risk factors and bone mineral density testing in accordance with the guidelines.</p> <p>Methods</p> <p>The project consisted of five Quality Circle phases that included: 1) Training & Baseline Data Collection, 2) First Educational Intervention & First Follow-Up Data Collection 3) First Strategy Implementation Session, 4) Final Educational Intervention & Final Follow-up Data Collection, and 5) Final Strategy Implementation Session. A total of 340 circle members formed 34 quality circles and participated in the study. The generalized estimating equations approach was used to model physician awareness of risk factors for osteoporosis and appropriate utilization of bone mineral density testing pre and post educational intervention (first year of the study). Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated.</p> <p>Results</p> <p>After the 1<sup>st </sup>year of the study, physicians' certainty of their patients' risk factor status increased. Certainty varied from an OR of 1.4 (95% CI: 1.1, 1.8) for prior vertebral fracture status to 6.3 (95% CI: 2.3, 17.9) for prior hip fracture status. Furthermore, bone mineral density testing increased in high risk as compared with low risk patients (OR: 1.4; 95% CI: 1.2, 1.7).</p> <p>Conclusion</p> <p>Quality Circle methodology was successful in increasing both physicians' awareness of osteoporosis risk factors and appropriate bone mineral density testing in accordance with the 2002 Canadian guidelines.</p

    Human male gamete endocrinology: 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates different aspects of human sperm biology and metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A wider biological role of 1alpha,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the active metabolite of vitamin D3, in tissues not primarily related to mineral metabolism was suggested. Recently, we evidenced the ultrastructural localization the 1,25(OH)2D3 receptor in the human sperm. However, the 1,25(OH)2D3 action in human male reproduction has not yet been clarified.</p> <p>Methods and Results</p> <p>By RT-PCR, Western blot and Immunofluorescence techniques, we demonstrated that human sperm expresses the 1,25(OH)2D3 receptor (VDR). Besides, 25(OH)D3-1 alpha-hydroxylase, evidenced by Western blot analysis, indicated that in sperm 1,25(OH)2D3 is locally produced, highlighting the potential for autocrine-paracrine responses. 1,25(OH)2D3 through VDR, increased intracellular Ca2+ levels, motility and acrosin activity revealing an unexpected significance of this hormone in the acquisition of fertilizing ability. In sperm, 1,25(OH)2D3 through VDR, reduces triglycerides content concomitantly to the increase of lipase activity. Rapid responses stimulated by 1,25(OH)2D3 have been observed on Akt, MAPK and GSK3 implying that this secosteroid is involved in different sperm signalling pathways.</p> <p>Conclusion</p> <p>Our data extended the role of 1,25(OH)2D3 beyond its conventional physiological actions, paving the way for novel therapeutic opportunities in the treatment of the male reproduction disorders.</p

    Active Drumming Experience Increases Infants' Sensitivity to Audiovisual Synchrony during Observed Drumming Actions

    Get PDF
    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition
    corecore