52 research outputs found

    Religious affiliation modulates weekly cycles of cropland burning in Sub-Saharan Africa

    Get PDF
    Research ArticleVegetation burning is a common land management practice in Africa, where fire is used for hunting, livestock husbandry, pest control, food gathering, cropland fertilization, and wildfire prevention. Given such strong anthropogenic control of fire, we tested the hypotheses that fire activity displays weekly cycles, and that the week day with the fewest fires depends on regionally predominant religious affiliation.We also analyzed the effect of land use (anthrome) on weekly fire cycle significance. Fire density (fire counts.km-2) observed per week day in each region was modeled using a negative binomial regression model, with fire counts as response variable, region area as offset and a structured random effect to account for spatial dependence. Anthrome (settled, cropland, natural, rangeland), religion (Christian, Muslim, mixed) week day, and their 2-way and 3-way interactions were used as independent variables. Models were also built separately for each anthrome, relating regional fire density with week day and religious affiliation. Analysis revealed a significant interaction between religion and week day, i.e. regions with different religious affiliation (Christian, Muslim) display distinct weekly cycles of burning. However, the religion vs. week day interaction only is significant for croplands, i.e. fire activity in African croplands is significantly lower on Sunday in Christian regions and on Friday in Muslim regions. Magnitude of fire activity does not differ significantly among week days in rangelands and in natural areas, where fire use is under less strict control than in croplands. These findings can contribute towards improved specification of ignition patterns in regional/global vegetation fire models, and may lead to more accurate meteorological and chemical weather forecastinginfo:eu-repo/semantics/publishedVersio

    Aerosols in the Pre-industrial Atmosphere

    Get PDF
    Purpose of Review: We assess the current understanding of the state and behaviour of aerosols under pre-industrial conditions and the importance for climate. Recent Findings: Studies show that the magnitude of anthropogenic aerosol radiative forcing over the industrial period calculated by climate models is strongly affected by the abundance and properties of aerosols in the pre-industrial atmosphere. The low concentration of aerosol particles under relatively pristine conditions means that global mean cloud albedo may have been twice as sensitive to changes in natural aerosol emissions under pre-industrial conditions compared to present-day conditions. Consequently, the discovery of new aerosol formation processes and revisions to aerosol emissions have large effects on simulated historical aerosol radiative forcing. Summary: We review what is known about the microphysical, chemical, and radiative properties of aerosols in the pre-industrial atmosphere and the processes that control them. Aerosol properties were controlled by a combination of natural emissions, modification of the natural emissions by human activities such as land-use change, and anthropogenic emissions from biofuel combustion and early industrial processes. Although aerosol concentrations were lower in the pre-industrial atmosphere than today, model simulations show that relatively high aerosol concentrations could have been maintained over continental regions due to biogenically controlled new particle formation and wildfires. Despite the importance of pre-industrial aerosols for historical climate change, the relevant processes and emissions are given relatively little consideration in climate models, and there have been very few attempts to evaluate them. Consequently, we have very low confidence in the ability of models to simulate the aerosol conditions that form the baseline for historical climate simulations. Nevertheless, it is clear that the 1850s should be regarded as an early industrial reference period, and the aerosol forcing calculated from this period is smaller than the forcing since 1750. Improvements in historical reconstructions of natural and early anthropogenic emissions, exploitation of new Earth system models, and a deeper understanding and evaluation of the controlling processes are key aspects to reducing uncertainties in future

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    Natural halogens buffer tropospheric ozone in a changing climate

    Get PDF
    Reactive atmospheric halogens destroy tropospheric ozone (O3), an air pollutant and greenhouse gas. The primary source of natural halogens is emissions from marine phytoplankton and algae, as well as abiotic sources from ocean and tropospheric chemistry, but how their fluxes will change under climate warming, and the resulting impacts on O3, are not well known. Here, we use an Earth system model to estimate that natural halogens deplete approximately 13% of tropospheric O3 in the present-day climate. Despite increased levels of natural halogens through the twenty-first century, this fraction remains stable due to compensation from hemispheric, regional and vertical heterogeneity in tropospheric O3 loss. Notably, this halogen-driven O3 buffering is projected to be greatest over polluted and populated regions, due mainly to iodine chemistry, with important implications for air quality
    • …
    corecore