1,303 research outputs found

    Elastic and anelastic relaxations associated with phase transitions in EuTiO3

    Get PDF
    Elastic and anelastic properties of single crystal samples of EuTiO3 have been measured between 10 and 300 K by Resonant Ultrasound Spectroscopy at frequencies in the vicinity of 1 MHz. Softening of the shear elastic constants C44 and by ~20-30% occurs with falling temperature in a narrow interval through the transition point, Tc = 284 K, for the cubic - tetragonal transition. This is accounted for by classical coupling of macroscopic spontaneous strains with the tilt order parameter, in the same manner as occurs in SrTiO3. A peak in the acoustic loss occurs a few degrees below Tc and is interpreted in terms of initially mobile ferroelastic twin walls which rapidly become pinned with further lowering of temperature. This contrasts with the properties of twin walls in SrTiO3 which remain mobile down to at least 15 K. No further anomalies were observed that might be indicative of strain coupling to any additional phase transitions above 10 K. A slight anomaly in the shear elastic constants, independent of frequency and without any associated acoustic loss, was found at ~140 K. It marks a change from elastic stiffening to softening with falling temperature and perhaps provides evidence for coupling between strain and local fluctuations of dipoles related to the incipient ferroelectric transition. An increase in acoustic loss below ~80 K is attributed to the development of dynamical magnetic clustering ahead of the known antiferromagnetic ordering transition at ~5.5 K. Detection of these elastic anomalies serves to emphasise that coupling of strain with tilting, ferroelectric and magnetic order parameters is likely to be a permeating influence in determining the structure, stability, properties and behaviour of EuTiO3.RUS facilities were established in Cambridge through a grant from the Natural Environment Research Council of Great Britain to MAC, which is gratefully acknowledged (NE/B505738/1). LJS acknowledges the support of the National Science Centre (NCN) through Grant MAESTRO No. DEC-2012/04/A/ST3/00342. CP acknowledges Financial support in Greece through grants EURYI and MEXT-CT-2006-039047 grants, and in Singapore through Award No. NRF-CRP-4-2008-04 of the Competitive Research Programme.This is the accepted version. The final version is published of the final version by APS here: http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.054119

    A laboratory characterisation of inorganic iodine emissions from the sea surface: dependence on oceanic variables and parameterisation for global modelling

    Get PDF
    Reactive iodine compounds play a significant role in the atmospheric chemistry of the oceanic boundary layer by influencing the oxidising capacity through catalytically removing O3 and altering the HOx and NOx balance. The sea-to-air flux of iodine over the open ocean is therefore an important quantity in assessing these impacts on a global scale. This paper examines the effect of a number of relevant environmental parameters, including water temperature, salinity and organic compounds, on the magnitude of the HOI and I2 fluxes produced from the uptake of O3 and its reaction with iodide ions in aqueous solution. The results of these laboratory experiments and those reported previously (Carpenter et al., 2013), along with sea surface iodide concentrations measured or inferred from measurements of dissolved total iodine and iodate reported in the literature, were then used to produce parameterised expressions for the HOI and I2 fluxes as a function of wind speed, sea-surface temperature and O3. These expressions were used in the Tropospheric HAlogen chemistry MOdel (THAMO) to compare with MAX-DOAS measurements of iodine monoxide (IO) performed during the HaloCAST-P cruise in the eastern Pacific ocean (Mahajan et al., 2012). The modelled IO agrees reasonably with the field observations, although significant discrepancies are found during a period of low wind speeds (< 3 m s&minus;1), when the model overpredicts IO by up to a factor of 3. The inorganic iodine flux contributions to IO are found to be comparable to, or even greater than, the contribution of organo-iodine compounds and therefore its inclusion in atmospheric models is important to improve predictions of the influence of halogen chemistry in the marine boundary layer

    Magnetic field and in situ stress dependence of elastic behavior in EuTiO3 from resonant ultrasound spectroscopy

    Get PDF
    Magneto-electric coupling phenomena in EuTiO3 are of considerable fundamental interest and are also understood to be key to reported multiferroic behavior in strained films, which exhibit distinctly different properties to the bulk. Here the magneto-elastic coupling of EuTiO3 is investigated by resonant ultrasound spectroscopy with in-situ applied magnetic field and stress as a function of temperature ranging from temperatures above the structural transition temperature, Ts, to below the antiferromagnetic ordering temperature Tn. One single crystal and two polycrystalline samples are investigated and compared to each other. Both paramagnetic and diamagnetic transducer carriers are used, allowing an examination of the effect of both stress and magnetic field on the behaviour of the sample. The properties are reported in constant field/variable temperature and in constant temperature/variable field mode where substantial differences between both data sets are observed. In addition, elastic and magnetic poling at high fields and stresses at low temperature has been performed in order to trace the history dependence of the elastic constants. Four different temperature regions are identified, characterized by unusual elastic responses. The low temperature phase diagram has been explored and found to exhibit rich complexity. The data evidence a considerable relaxation of elastic constants at high temperatures, but with little effect from magnetic field alone above 20 K, in addition to the known low temperature coupling.MAC acknowledges support from NERC and EPSRC (grants NE/B505738/1 and EP/I036079/1, respectively). CP acknowledges financial support in Greece through FP7-REGPOT-2012-2013-1, and in Singapore through Award No. NRF-CRP-4-2008-04 of the Competitive Research Programme. LJS acknowledges the support of the National Science Centre (NCN) through grant MAESTRO no. DEC-2012/04/A/ST3/00342. Dr Albert Migliori (Los Alamos National Laboratory) is thanked for invaluable assistance in creating the RUS system with in-situ magnetic field. Prof Jim Scott (U. Cambridge) is thanked for his advice and assistance in interpreting the data and improving the manuscript. Tony Dennis (U. Cambridge) collected the SQUID data.This is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevB.93.05410

    Young women's use of a microbicide surrogate: The complex influence of relationship characteristics and perceived male partners' evaluations

    Get PDF
    This is the post-print version of the article. The official published version can be found at the link below.Currently in clinical trials, vaginal microbicides are proposed as a female-initiated method of sexually transmitted infection prevention. Much of microbicide acceptability research has been conducted outside of the United States and frequently without consideration of the social interaction between sex partners, ignoring the complex gender and power structures often inherent in young women’s (heterosexual) relationships. Accordingly, the purpose of this study was to build on existing microbicide research by exploring the role of male partners and relationship characteristics on young women’s use of a microbicide surrogate, an inert vaginal moisturizer (VM), in a large city in the United States. Individual semi-structured interviews were conducted with 40 young women (18–23 years old; 85% African American; 47.5% mothers) following use of the VM during coital events for a 4 week period. Overall, the results indicated that relationship dynamics and perceptions of male partners influenced VM evaluation. These two factors suggest that relationship context will need to be considered in the promotion of vaginal microbicides. The findings offer insights into how future acceptability and use of microbicides will be influenced by gendered power dynamics. The results also underscore the importance of incorporating men into microbicide promotion efforts while encouraging a dialogue that focuses attention on power inequities that can exist in heterosexual relationships. Detailed understanding of these issues is essential for successful microbicide acceptability, social marketing, education, and use.This study was funded by a grant from National Institutes of Health (NIHU19AI 31494) as well as research awards to the first author: Friends of the Kinsey Institute Research Grant Award, Indiana University’s School of HPER Graduate Student Grant-in-Aid of Research Award, William L. Yarber Sexual Health Fellowship, and the Indiana University Graduate and Professional Student Organization Research Grant

    Calibration of myocardial T2 and T1 against iron concentration.

    Get PDF
    BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron. METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy. RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001). CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies

    Relationships of Polychlorinated Biphenyls and Dichlorodiphenyldichloroethylene (p,p’-DDE) with Testosterone Levels in Adolescent Males

    Get PDF
    Background: Concern persists over endocrine-disrupting effects of persistent organic pollutants (POPs) on human growth and sexual maturation. Potential effects of toxicant exposures on testosterone levels during puberty are not well characterized. Objectives: In this study we evaluated the relationship between toxicants [polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethylene (p,p´-DDE), hexachlorobenzene (HCB), and lead] and testosterone levels among 127 Akwesasne Mohawk males 10 to \u3c 17 years of age with documented toxicant exposures. Methods: Data were collected between February 1996 and January 2000. Fasting blood specimens were collected before breakfast by trained Akwesasne Mohawk staff. Multivariable regression models were used to estimates associations between toxicants and serum testosterone, adjusted for other toxicants, Tanner stage, and potential confounders. Results: The sum of 16 PCB congeners (Σ16PCBs) that were detected in ≥ 50% of the population was significantly and negatively associated with serum testosterone levels, such that a 10% change in exposure was associated with a 5.6% decrease in testosterone (95% CI: –10.8, –0.5%). Of the 16 congeners, the more persistent ones (Σ8PerPCBs) were related to testosterone, whereas the less persistent ones, possibly reflecting more recent exposure, were not. When PCB congeners were subgrouped, the association was significant for the sum of eight more persistent PCBs (5.7% decrease; 95% CI: –11, –0.4%), and stronger than the sum of six less persistent congeners (3.1% decrease; 95% CI: –7.2, 0.9%). p,p´-DDE was positively but not significantly associated with serum testosterone (5.2% increase with a 10% increase in exposure; 95% CI: –0.5, 10.9%). Neither lead nor HCB was significantly associated with testosterone levels. Conclusions: Exposure to PCBs, particularly the more highly persistent congeners, may negatively influence testosterone levels among adolescent males. The positive relationship between p,p´-DDE and testosterone indicates that not all POPs act similarly

    Color & Weak triplet scalars, the dimuon asymmetry in BsB_s decay, the top forward-backward asymmetry, and the CDF dijet excess

    Full text link
    The new physics required to explain the anomalies recently reported by the D0 and CDF collaborations, namely the top forward-backward asymmetry (FBA), the like-sign dimuon charge asymmetry in semileptonic b decay, and the CDF dijet excess, has to feature an amount of flavor symmetry in order to satisfy the severe constrains arising from flavor violation. In this paper we show that, once baryon number conservation is imposed, color & weak triplet scalars with hypercharge Y=1/3Y=1/3 can feature the required flavor structure as a consequence of standard model gauge invariance. The color & weak triplet model can simultaneously explain the top FBA and the dimuon charge asymmetry or the dimuon charge asymmetry and the CDF dijet excess. However, the CDF dijet excess appears to be incompatible with the top FBA in the minimal framework. Our model for the dimuon asymmetry predicts the observed pattern hdhsh_d\ll h_s in the region of parameter space required to explain the top FBA, whereas our model for the CDF dijet anomaly is characterized by the absence of beyond the SM b-quark jets in the excess region. Compatibility of the color & weak triplet with the electroweak constraints is also discussed. We show that a Higgs boson mass exceeding the LEP bound is typically favored in this scenario, and that both Higgs production and decay can be significantly altered by the triplet. The most promising collider signature is found if the splitting among the components of the triplet is of weak scale magnitude.Comment: references added, published versio

    On the nature of the fourth generation neutrino and its implications

    Get PDF
    We consider the neutrino sector of a Standard Model with four generations. While the three light neutrinos can obtain their masses from a variety of mechanisms with or without new neutral fermions, fourth-generation neutrinos need at least one new relatively light right-handed neutrino. If lepton number is not conserved this neutrino must have a Majorana mass term whose size depends on the underlying mechanism for lepton number violation. Majorana masses for the fourth generation neutrinos induce relative large two-loop contributions to the light neutrino masses which could be even larger than the cosmological bounds. This sets strong limits on the mass parameters and mixings of the fourth generation neutrinos.Comment: To be published. Few typos corrected, references update

    A nocturnal atmospheric loss of CH2I2 in the remote marine boundary layer.

    Get PDF
    Ocean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CH2I2) and chloro-iodomethane (CH2ICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CH2I2 and CH2ICl in air and of CH2I2 in seawater. Both compounds are known to undergo rapid photolysis during the day, but models assume no night-time atmospheric losses. Surprisingly, the diurnal cycle of CH2I2 was lower in amplitude than that of CH2ICl, despite its faster photolysis rate. We speculate that night-time loss of CH2I2 occurs due to reaction with NO3 radicals. Indirect results from a laboratory study under ambient atmospheric boundary layer conditions indicate a k CH2I2+NO3 of ≤4 × 10-13 cm3 molecule-1 s-1; a previous kinetic study carried out at ≤100 Torr found k CH2I2+NO3 of 4 × 10-13 cm3 molecule-1 s-1. Using the 1-dimensional atmospheric THAMO model driven by sea-air fluxes calculated from the seawater and air measurements (averaging 1.8 +/- 0.8 nmol m-2 d-1 for CH2I2 and 3.7 +/- 0.8 nmol m-2 d-1 for CH2ICl), we show that the model overestimates night-time CH2I2 by >60 % but reaches good agreement with the measurements when the CH2I2 + NO3 reaction is included at 2-4 × 10-13 cm3 molecule-1 s-1. We conclude that the reaction has a significant effect on CH2I2 and helps reconcile observed and modeled concentrations. We recommend further direct measurements of this reaction under atmospheric conditions, including of product branching ratios.LJC acknowledges NERC (NE/J00619X/1) and the National Centre for Atmospheric Science (NCAS) for funding. The laboratory work was supported by the NERC React-SCI (NE/K005448/1) and RONOCO (NE/F005466/1) grants.This is the final version of the article. It was first available from Springer via http://dx.doi.org/10.1007/s10874-015-9320-

    T1 at 1.5T and 3T compared with conventional T2* at 1.5T for cardiac siderosis

    Get PDF
    Background: Myocardial black blood (BB) T2* relaxometry at 1.5T provides robust, reproducible and calibrated non-invasive assessment of cardiac iron burden. In vitro data has shown that like T2*, novel native Modified Look-Locker Inversion recovery (MOLLI) T1 shortens with increasing tissue iron. The relative merits of T1 and T2* are largely unexplored. We compared the established 1.5T BB T2* technique against native T1 values at 1.5T and 3T in iron overload patients and in normal volunteers. Methods: A total of 73 subjects (42 male) were recruited, comprising 20 healthy volunteers (controls) and 53 patients (thalassemia major 22, sickle cell disease 9, hereditary hemochromatosis 9, other iron overload conditions 13). Single mid-ventricular short axis slices were acquired for BB T2* at 1.5T and MOLLI T1 quantification at 1.5T and 3T. Results: In healthy volunteers, median T1 was 1014 ms (full range 939–1059 ms) at 1.5T and modestly increased to 1165ms (full range 1056–1224 ms) at 3T. All patients with significant cardiac iron overload (1.5T T2* values <20 ms) had T1 values <939 ms at 1.5T, and <1056 ms at 3T. Associations between T2* and T1 were found to be moderate with y =377 · x0.282 at 1.5T (R2 = 0.717), and y =406 · x0.294 at 3T (R2 = 0.715). Measures of reproducibility of T1 appeared superior to T2*. Conclusions: T1 mapping at 1.5T and at 3T can identify individuals with significant iron loading as defined by the current gold standard T2* at 1.5T. However, there is significant scatter between results which may reflect measurement error, but it is also possible that T1 interacts with T2*, or is differentially sensitive to aspects of iron chemistry or other biology. Hurdles to clinical implementation of T1 include the lack of calibration against human myocardial iron concentration, no demonstrated relation to cardiac outcomes, and variation in absolute T1 values between scanners, which makes inter-centre comparisons difficult. The relative merits of T1 at 3T versus T2* at 3T require further consideration
    corecore