420 research outputs found

    Lattice-dynamical calculation of phonon scattering at a disordered interface

    Full text link
    For an fcc crystal with central force interactions and separately for a scalar model on a square lattice, we compute exactly the phonon transmission coefficient T(ω)T(\omega) through a disordered planar interface between two identical semi - infinite leads. At high frequencies T(ω)T(\omega) exhibits a strong frequency dependence which is determined by the correlation length of the disorder.Comment: to appear in Physica B, proceedings of the 9th international conference on phonon scatterin

    Leadership in Improving Schools: A Qualitative Perspective

    Get PDF
    This article reports early case-study data gathered from 20 schools involved in the ‘Impact of School Leadership on Pupil Outcomes’ project. We present and discuss the perceptions of headteachers and other school leaders regarding leadership factors that directly and indirectly affect pupil outcomes in these improving schools. Included are issues relating to the pivotal role played by the headteacher in setting and communicating a strategic vision for the school; models of distributed leadership; and the building of leadership capacity so as to build a collective responsibility for the improvement of pupil outcomes

    Clinical practice guidelines for the care of girls and women with Turner syndrome:Proceedings from the 2023 Aarhus International Turner Syndrome Meeting

    Get PDF
    Turner syndrome (TS) affects 50 per 100 000 females. TS affects multiple organs through all stages of life, necessitating multidisciplinary care. This guideline extends previous ones and includes important new advances, within diagnostics and genetics, estrogen treatment, fertility, co-morbidities, and neurocognition and neuropsychology. Exploratory meetings were held in 2021 in Europe and United States culminating with a consensus meeting in Aarhus, Denmark in June 2023. Prior to this, eight groups addressed important areas in TS care: (1) diagnosis and genetics, (2) growth, (3) puberty and estrogen treatment, (4) cardiovascular health, (5) transition, (6) fertility assessment, monitoring, and counselling, (7) health surveillance for comorbidities throughout the lifespan, and (8) neurocognition and its implications for mental health and well-being. Each group produced proposals for the present guidelines, which were meticulously discussed by the entire group. Four pertinent questions were submitted for formal GRADE (Grading of Recommendations, Assessment, Development and Evaluation) evaluation with systematic review of the literature. The guidelines project was initiated by the European Society for Endocrinology and the Pediatric Endocrine Society, in collaboration with members from the European Society for Pediatric Endocrinology, the European Society of Human Reproduction and Embryology, the European Reference Network on Rare Endocrine Conditions, the Society for Endocrinology, and the European Society of Cardiology, Japanese Society for Pediatric Endocrinology, Australia and New Zealand Society for Pediatric Endocrinology and Diabetes, Latin American Society for Pediatric Endocrinology, Arab Society for Pediatric Endocrinology and Diabetes, and the Asia Pacific Pediatric Endocrine Society. Advocacy groups appointed representatives for pre-meeting discussions and the consensus meeting.</p

    GABA-mediated changes in inter-hemispheric beta frequency activity in early-stage Parkinson's disease

    Get PDF
    In Parkinson's disease (PD), elevated beta (15-35Hz) power in subcortical motor networks is widely believed to promote aspects of PD symptomatology, moreover, a reduction in beta power and coherence accompanies symptomatic improvement following effective treatment with l-DOPA. Previous studies have reported symptomatic improvements that correlate with changes in cortical network activity following GABAA receptor modulation. In this study we have used whole-head magnetoencephalography to characterize neuronal network activity, at rest and during visually cued finger abductions, in unilaterally symptomatic PD and age-matched control participants. Recordings were then repeated following administration of sub-sedative doses of the hypnotic drug zolpidem (0.05mg/kg), which binds to the benzodiazepine site of the GABAA receptor. A beamforming based 'virtual electrode' approach was used to reconstruct oscillatory power in the primary motor cortex (M1), contralateral and ipsilateral to symptom presentation in PD patients or dominant hand in control participants. In PD patients, contralateral M1 showed significantly greater beta power than ipsilateral M1. Following zolpidem administration contralateral beta power was significantly reduced while ipsilateral beta power was significantly increased resulting in a hemispheric power ratio that approached parity. Furthermore, there was highly significant correlation between hemispheric beta power ratio and Unified Parkinson's Disease Rating Scale (UPDRS). The changes in contralateral and ipsilateral beta power were reflected in pre-movement beta desynchronization and the late post-movement beta rebound. However, the absolute level of movement-related beta desynchronization was not altered. These results show that low-dose zolpidem not only reduces contralateral beta but also increases ipsilateral beta, while rebalancing the dynamic range of M1 network oscillations between the two hemispheres. These changes appear to underlie the symptomatic improvements afforded by low-dose zolpidem

    Time evolution of in vivo articular cartilage repair induced by bone marrow stimulation and scaffold implantation in rabbits

    Full text link
    Purpose: Tissue engineering techniques were used to study cartilage repair over a 12-month period in a rabbit model. Methods: A full-depth chondral defect along with subchondral bone injury were originated in the knee joint, where a biostable porous scaffold was implanted, synthesized of poly(ethyl acrylate-co-hydroxyethyl acrylate) copolymer. Morphological evolution of cartilage repair was studied 1 and 2 weeks, and 1, 3, and 12 months after implantation by histological techniques. The 3-month group was chosen to compare cartilage repair to an additional group where scaffolds were preseeded with allogeneic chondrocytes before implantation, and also to controls, who underwent the same surgery procedure, with no scaffold implantation. Results: Neotissue growth was first observed in the deepest scaffold pores 1 week after implantation, which spread thereafter; 3 months later scaffold pores were filled mostly with cartilaginous tissue in superficial and middle zones, and with bone tissue adjacent to subchondral bone. Simultaneously, native chondrocytes at the edges of the defect started to proliferate 1 week after implantation; within a month those edges had grown centripetally and seemed to embed the scaffold, and after 3 months, hyaline-like cartilage was observed on the condylar surface. Preseeded scaffolds slightly improved tissue growth, although the quality of repair tissue was similar to non-preseeded scaffolds. Controls showed that fibrous cartilage was mainly filling the repair area 3 months after surgery. In the 12-month group, articular cartilage resembled the untreated surface. Conclusions: Scaffolds guided cartilaginous tissue growth in vivo, suggesting their importance in stress transmission to the cells for cartilage repair.This study was supported by the Spanish Ministry of Science and Innovation through MAT2010-21611-C03-00 project (including the FEDER financial support), by Conselleria de Educacion (Generalitat Valenciana, Spain) PROMETEO/2011/084 grant, and by CIBER-BBN en Bioingenieria, Biomateriales y Nanomedicina. The work of JLGR was partially supported by funds from the Generalitat Valenciana, ACOMP/2012/075 project. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the - Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Sancho-Tello Valls, M.; Forriol, F.; Gastaldi, P.; Ruiz Sauri, A.; Martín De Llano, JJ.; Novella-Maestre, E.; Antolinos Turpín, CM.... (2015). Time evolution of in vivo articular cartilage repair induced by bone marrow stimulation and scaffold implantation in rabbits. International Journal of Artificial Organs. 38(4):210-223. https://doi.org/10.5301/ijao.5000404S210223384Becerra, J., Andrades, J. A., Guerado, E., Zamora-Navas, P., López-Puertas, J. M., & Reddi, A. H. (2010). Articular Cartilage: Structure and Regeneration. Tissue Engineering Part B: Reviews, 16(6), 617-627. doi:10.1089/ten.teb.2010.0191Nelson, L., Fairclough, J., & Archer, C. (2009). Use of stem cells in the biological repair of articular cartilage. Expert Opinion on Biological Therapy, 10(1), 43-55. doi:10.1517/14712590903321470MAINIL-VARLET, P., AIGNER, T., BRITTBERG, M., BULLOUGH, P., HOLLANDER, A., HUNZIKER, E., … STAUFFER, E. (2003). HISTOLOGICAL ASSESSMENT OF CARTILAGE REPAIR. The Journal of Bone and Joint Surgery-American Volume, 85, 45-57. doi:10.2106/00004623-200300002-00007Hunziker, E. B., Kapfinger, E., & Geiss, J. (2007). The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis and Cartilage, 15(4), 403-413. doi:10.1016/j.joca.2006.09.010Onyekwelu, I., Goldring, M. B., & Hidaka, C. (2009). Chondrogenesis, joint formation, and articular cartilage regeneration. Journal of Cellular Biochemistry, 107(3), 383-392. doi:10.1002/jcb.22149Ahmed, T. A. E., & Hincke, M. T. (2010). Strategies for Articular Cartilage Lesion Repair and Functional Restoration. Tissue Engineering Part B: Reviews, 16(3), 305-329. doi:10.1089/ten.teb.2009.0590Hangody, L., Kish, G., Kárpáti, Z., Udvarhelyi, I., Szigeti, I., & Bély, M. (1998). Mosaicplasty for the Treatment of Articular Cartilage Defects: Application in Clinical Practice. Orthopedics, 21(7), 751-756. doi:10.3928/0147-7447-19980701-04Steinwachs, M. R., Guggi, T., & Kreuz, P. C. (2008). Marrow stimulation techniques. Injury, 39(1), 26-31. doi:10.1016/j.injury.2008.01.042Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. New England Journal of Medicine, 331(14), 889-895. doi:10.1056/nejm199410063311401Richter, W. (2009). Mesenchymal stem cells and cartilagein situregeneration. Journal of Internal Medicine, 266(4), 390-405. doi:10.1111/j.1365-2796.2009.02153.xBartlett, W., Skinner, J. A., Gooding, C. R., Carrington, R. W. J., Flanagan, A. M., Briggs, T. W. R., & Bentley, G. (2005). Autologous chondrocyte implantationversusmatrix-induced autologous chondrocyte implantation for osteochondral defects of the knee. The Journal of Bone and Joint Surgery. British volume, 87-B(5), 640-645. doi:10.1302/0301-620x.87b5.15905Little, C. J., Bawolin, N. K., & Chen, X. (2011). Mechanical Properties of Natural Cartilage and Tissue-Engineered Constructs. Tissue Engineering Part B: Reviews, 17(4), 213-227. doi:10.1089/ten.teb.2010.0572Vikingsson, L., Gallego Ferrer, G., Gómez-Tejedor, J. A., & Gómez Ribelles, J. L. (2014). An «in vitro» experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 32, 125-131. doi:10.1016/j.jmbbm.2013.12.024Weber, J. F., & Waldman, S. D. (2014). Calcium signaling as a novel method to optimize the biosynthetic response of chondrocytes to dynamic mechanical loading. Biomechanics and Modeling in Mechanobiology, 13(6), 1387-1397. doi:10.1007/s10237-014-0580-xMauck, R. L., Soltz, M. A., Wang, C. C. B., Wong, D. D., Chao, P.-H. G., Valhmu, W. B., … Ateshian, G. A. (2000). Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels. Journal of Biomechanical Engineering, 122(3), 252-260. doi:10.1115/1.429656Palmoski, M. J., & Brandt, K. D. (1984). Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis & Rheumatism, 27(6), 675-681. doi:10.1002/art.1780270611Khoshgoftar, M., Ito, K., & van Donkelaar, C. C. (2014). The Influence of Cell-Matrix Attachment and Matrix Development on the Micromechanical Environment of the Chondrocyte in Tissue-Engineered Cartilage. Tissue Engineering Part A, 20(23-24), 3112-3121. doi:10.1089/ten.tea.2013.0676Agrawal, C. M., & Ray, R. B. (2001). Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research, 55(2), 141-150. doi:10.1002/1097-4636(200105)55:23.0.co;2-jPérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030Horbett, T. A., & Schway, M. B. (1988). Correlations between mouse 3T3 cell spreading and serum fibronectin adsorption on glass and hydroxyethylmethacrylate-ethylmethacrylate copolymers. Journal of Biomedical Materials Research, 22(9), 763-793. doi:10.1002/jbm.820220903Kiremitçi, M., Peşmen, A., Pulat, M., & Gürhan, I. (1993). Relationship of Surface Characteristics to Cellular Attachment in PU and PHEMA. Journal of Biomaterials Applications, 7(3), 250-264. doi:10.1177/088532829300700304Lydon, M. ., Minett, T. ., & Tighe, B. . (1985). Cellular interactions with synthetic polymer surfaces in culture. Biomaterials, 6(6), 396-402. doi:10.1016/0142-9612(85)90100-0Campillo-Fernandez, A. J., Pastor, S., Abad-Collado, M., Bataille, L., Gomez-Ribelles, J. L., Meseguer-Dueñas, J. M., … Ruiz-Moreno, J. M. (2007). Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 8(8), 2429-2436. doi:10.1021/bm0703012Funayama, A., Niki, Y., Matsumoto, H., Maeno, S., Yatabe, T., Morioka, H., … Toyama, Y. (2008). Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model. Journal of Orthopaedic Science, 13(3), 225-232. doi:10.1007/s00776-008-1220-zKitahara, S., Nakagawa, K., Sah, R. L., Wada, Y., Ogawa, T., Moriya, H., & Masuda, K. (2008). In Vivo Maturation of Scaffold-free Engineered Articular Cartilage on Hydroxyapatite. Tissue Engineering Part A, 14(11), 1905-1913. doi:10.1089/ten.tea.2006.0419Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448Wang, Y., Bian, Y.-Z., Wu, Q., & Chen, G.-Q. (2008). Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials, 29(19), 2858-2868. doi:10.1016/j.biomaterials.2008.03.021Alió del Barrio, J. L., Chiesa, M., Gallego Ferrer, G., Garagorri, N., Briz, N., Fernandez-Delgado, J., … De Miguel, M. P. (2014). Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model. Journal of Biomedical Materials Research Part A, 103(3), 1106-1118. doi:10.1002/jbm.a.35249Diego, R. B., Olmedilla, M. P., Aroca, A. S., Ribelles, J. L. G., Pradas, M. M., Ferrer, G. G., & Sánchez, M. S. (2005). Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science: Materials in Medicine, 16(8), 693-698. doi:10.1007/s10856-005-2604-7Serrano Aroca, A., Campillo Fernández, A. J., Gómez Ribelles, J. L., Monleón Pradas, M., Gallego Ferrer, G., & Pissis, P. (2004). Porous poly(2-hydroxyethyl acrylate) hydrogels prepared by radical polymerisation with methanol as diluent. Polymer, 45(26), 8949-8955. doi:10.1016/j.polymer.2004.10.033Diani, J., Fayolle, B., & Gilormini, P. (2009). A review on the Mullins effect. European Polymer Journal, 45(3), 601-612. doi:10.1016/j.eurpolymj.2008.11.017Mullins, L. (1969). Softening of Rubber by Deformation. Rubber Chemistry and Technology, 42(1), 339-362. doi:10.5254/1.3539210Jurvelin, J. S., Buschmann, M. D., & Hunziker, E. B. (2003). Mechanical anisotropy of the human knee articular cartilage in compression. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 217(3), 215-219. doi:10.1243/095441103765212712Shapiro, F., Koide, S., & Glimcher, M. J. (1993). Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. The Journal of Bone & Joint Surgery, 75(4), 532-553. doi:10.2106/00004623-199304000-00009SELLERS, R. S., ZHANG, R., GLASSON, S. S., KIM, H. D., PELUSO, D., D’AUGUSTA, D. A., … MORRIS, E. A. (2000). Repair of Articular Cartilage Defects One Year After Treatment with Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2)*. The Journal of Bone and Joint Surgery-American Volume, 82(2), 151-160. doi:10.2106/00004623-200002000-00001Hunziker, E. B., Michel, M., & Studer, D. (1997). Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microscopy Research and Technique, 37(4), 271-284. doi:10.1002/(sici)1097-0029(19970515)37:43.0.co;2-oAppelman, T. P., Mizrahi, J., Elisseeff, J. H., & Seliktar, D. (2009). The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation. Biomaterials, 30(4), 518-525. doi:10.1016/j.biomaterials.2008.09.063Chung, C., & Burdick, J. A. (2008). Engineering cartilage tissue. Advanced Drug Delivery Reviews, 60(2), 243-262. doi:10.1016/j.addr.2007.08.027HUNZIKER, E. B., & ROSENBERG, L. C. (1996). Repair of Partial-Thickness Defects in Articular Cartilage. The Journal of Bone & Joint Surgery, 78(5), 721-33. doi:10.2106/00004623-199605000-00012Schulze-Tanzil, G. (2009). Activation and dedifferentiation of chondrocytes: Implications in cartilage injury and repair. Annals of Anatomy - Anatomischer Anzeiger, 191(4), 325-338. doi:10.1016/j.aanat.2009.05.003Umlauf, D., Frank, S., Pap, T., & Bertrand, J. (2010). Cartilage biology, pathology, and repair. Cellular and Molecular Life Sciences, 67(24), 4197-4211. doi:10.1007/s00018-010-0498-0Karystinou, A., Dell’Accio, F., Kurth, T. B. A., Wackerhage, H., Khan, I. M., Archer, C. W., … De Bari, C. (2009). Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology, 48(9), 1057-1064. doi:10.1093/rheumatology/kep192Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis & Rheumatism, 52(8), 2521-2529. doi:10.1002/art.21212Schaefer, D., Martin, I., Jundt, G., Seidel, J., Heberer, M., Grodzinsky, A., … Freed, L. E. (2002). Tissue-engineered composites for the repair of large osteochondral defects. Arthritis & Rheumatism, 46(9), 2524-2534. doi:10.1002/art.1049

    Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Get PDF
    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (∼10−9 to 10−7 m/s, corresponding to permeability of ∼10−16 to 10−14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation

    Pathological structural conversion of α-synuclein at the mitochondria induces neuronal toxicity

    Get PDF
    Aggregation of alpha-synuclein (α-Syn) drives Parkinson’s disease (PD), although the initial stages of self-assembly and structural conversion have not been directly observed inside neurons. In this study, we tracked the intracellular conformational states of α-Syn using a single-molecule Förster resonance energy transfer (smFRET) biosensor, and we show here that α-Syn converts from a monomeric state into two distinct oligomeric states in neurons in a concentration-dependent and sequence-specific manner. Three-dimensional FRET-correlative light and electron microscopy (FRET-CLEM) revealed that intracellular seeding events occur preferentially on membrane surfaces, especially at mitochondrial membranes. The mitochondrial lipid cardiolipin triggers rapid oligomerization of A53T α-Syn, and cardiolipin is sequestered within aggregating lipid–protein complexes. Mitochondrial aggregates impair complex I activity and increase mitochondrial reactive oxygen species (ROS) generation, which accelerates the oligomerization of A53T α-Syn and causes permeabilization of mitochondrial membranes and cell death. These processes were also observed in induced pluripotent stem cell (iPSC)–derived neurons harboring A53T mutations from patients with PD. Our study highlights a mechanism of de novo α-Syn oligomerization at mitochondrial membranes and subsequent neuronal toxicity

    Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and the ex‐ tent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (precon‐ ditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experi‐ mentally simulated, under standard laboratory conditions, rewetting of leaves, river‐ bed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative character‐ istics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dis‐ solved substances during rewetting events (56%–98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contrib‐ uted most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental vari‐ ables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached sub‐ stances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying event
    corecore