173 research outputs found

    A robust broadband fat suppressing phaser T2 preparation module for cardiac magnetic resonance imaging at 3T

    Full text link
    Purpose: Designing a new T2 preparation (T2-Prep) module in order to simultaneously provide robust fat suppression and efficient T2 preparation without requiring an additional fat suppression module for T2-weighted imaging at 3T. Methods: The tip-down RF pulse of an adiabatic T2 preparation (T2-Prep) module was replaced by a custom-designed RF excitation pulse that induces a phase difference between water and fat, resulting in a simultaneous T2 preparation of water signals and the suppression of fat signals at the end of the module (now called a phaser adiabatic T2-Prep). Using numerical simulations, in vitro and in vivo ECG-triggered navigator gated acquisitions of the human heart, the blood, myocardium and fat signal-to-noise ratio and right coronary artery (RCA) vessel sharpness using this approach were compared against previously published conventional adiabatic T2-Prep approaches Results: Numerical simulations predicted an increased fat suppression bandwidth and decreased sensitivity against transmit magnetic field inhomogeneities using the proposed approach, while preserving the water T2 preparation capabilities. This was confirmed by the tissue signals acquired on the phantom and the in vivo MRA, which show similar blood and myocardium SNR and CNR and significantly reduced fat SNR compared to the other methods tested. As a result, the RCA conspicuity was significantly increased and the motion artifacts were visually decreased. Conclusion: A novel fat-suppressing T2-preparation method was developed and implemented that demonstrated robust fat suppression and increased vessel sharpness compared with conventional techniques, while preserving its T2 preparation capabilities.Comment: 23 pages, 5 figures, submitted to Magnetic Resonance in Medicin

    Radical-free hyperpolarized MRI using endogenously-occurring pyruvate analogues and UV-induced nonpersistent radicals

    Full text link
    It was demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with ultraviolet (UV) light, enabling radical-free dissolution DNP. Although pyruvate is endogenous, an excess of additional pyruvate may perturb metabolic processes, making it potentially unsuitable as a polarizing agent when studying fatty acids or carbohydrate metabolism. Therefore, the aim of the study was to characterize solutions containing endogenously-occurring alternatives to pyruvate as UV-induced nonpersistent radical precursors for in vivo hyperpolarized MRI. The metabolites alpha-ketovalerate (AKV) and alpha-ketobutyrate (AKB) are analogues of pyruvate and were chosen as potential radical precursors. Sample formulations containing AKV and AKB were studied with UV-visible spectroscopy, irradiated with UV light, and their nonpersistent radical yields were quantified with ESR and compared to pyruvate. The addition of 13C labeled substrates to the sample matrix altered the radical yield of the precursors. Using AKB increased the 13C-labeled glucose liquid state polarization to 16.3 +/- 1.3% compared with 13.3 +/- 1.5% obtained with pyruvate, and 8.9 +/- 2.1% with AKV. For [1-13C]butyric acid, polarization levels of 12.1 +/- 1.1% for AKV and 12.9 +/- 1.7% for AKB were achieved. Hyperpolarized [1-13C]butyrate metabolism in the heart revealed label incorporation into [1-13C]acetylcarnitine, [1-13C]acetoacetate, [1-13C]butyrylcarnitine, [5-13C]glutamate and [5-13C]citrate. This study demonstrates the potential of AKV and AKB as endogenous polarizing agents for in vivo radical-free hyperpolarized MRI. UV-induced, nonpersistent radicals generated in endogenous metabolites enable high polarization without requiring radical filtration, thus simplifying the quality-control tests in clinical applications.Comment: 38 pages, 5 Tables, 8 Figures, Submitted to NMR in Biomedicin

    Guanabenz inhibits TLR9 signaling through a pathway that is independent of eIF2α dephosphorylation by the GADD34/PP1c complex

    Get PDF
    Endoplasmic reticulum (ER) stress triggers or amplifies inflammatory signals and cytokine production in immune cells. Upon the resolution of ER stress, the inducible phosphatase 1 cofactor GADD34 promotes the dephosphorylation of the initiation factor eIF2α, thereby enabling protein translation to resume. Several aminoguanidine compounds, such as guanabenz, perturb the eIF2α phosphorylation-dephosphorylation cycle and protect different cell or tissue types from protein misfolding and degeneration. We investigated how pharmacological interference with the eIF2α pathway could be beneficial to treat autoinflammatory diseases dependent on proinflammatory cytokines and type I interferons (IFNs), the production of which is regulated by GADD34 in dendritic cells (DCs). In mouse and human DCs and B cells, guanabenz prevented the activation of Toll-like receptor 9 (TLR9) by CpG oligodeoxynucleotides or DNA-immunoglobulin complexes in endosomes. In vivo, guanabenz protected mice from CpG oligonucleotide-dependent cytokine shock and decreased autoimmune symptom severity in a chemically induced model of systemic lupus erythematosus. However, we found that guanabenz exerted its inhibitory effect independently of GADD34 activity on eIF2α and instead decreased the abundance of CH25H, a cholesterol hydroxylase linked to antiviral immunity. Our results therefore suggest that guanabenz and similar compounds could be used to treat type I IFN-dependent pathologies and that CH25H could be a therapeutic target to control these diseases.publishe

    Expression of Interferon-Gamma Receptors in Normal and Psoriatic Skin

    Get PDF
    Psoriatic keratinocytes have a reduced antiproliferative response to interferon (IFN)-gamma, and HLA-DR expression is usually not observed on keratinocytes in psoriatic plaques despite the presence of activated T cells. We have therefore compared the expression of IFN-gamma receptors in psoriatic skin with that of normal human skin. Using mouse monoclonal antibodies and immunoperoxidase staining on cryostat cut sections, we detected IFN-gamma receptors on keratinocytes throughout the epidermal layers except stratum corneum in normal skin (n = 11). Biopsy specimens from involved psoriatic skin (n = 17) consistently showed a staining pattern that differed from that of normal skin in that only the lower part of epidermis reacted with the antibodies to IFN-gamma receptors, whereas the upper layers showed no or minimal staining. Expression of IFN-gamma receptors in uninvolved psoriatic skin (n = 16) did not differ from that of healthy controls. Forty-five percent of the biopsies from lesional psoriatic skin displayed ICAM-1 positive keratinocytes, and only two specimens had a limited expression of HLA-DR reactive keratinocytes. The decreased binding of antibodies against the IFN-gamma receptors in the upper part of psoriatic epidermis might be secondary to abnormal maturation of psoriatic keratinocytes or a primary defect involving abnormal modulation of IFN-gamma receptors

    Guanabenz Prevents d-Galactosamine/Lipopolysaccharide-Induced Liver Damage and Mortality

    Get PDF
    Multi-organ failure in response to uncontrolled microbial infection is characterized by low blood pressure accompanied by a systemic over-inflammation state, caused by massive pro-inflammatory cytokines release and liver damage. Recently, the integrated stress response (ISR), characterized by eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, was involved with controlling apoptosis in stressed hepatocytes and associated with poor survival to endotoxin challenge. Lipopolysaccharide (LPS) alone is able to induce the ISR in hepatocytes and can trigger massive liver damage along with tumor necrosis factor-alpha (TNF-α) expression. Consequently, drugs interfering with eIF2α phosphorylation may represent potential candidates for the treatment of such pathologies. We, therefore, used Guanabenz (GBZ), a small compound with enhancing eIF2α phosphorylation activity to evaluate its effect on bacterial LPS sensing and endotoxemia. GBZ is confirmed here to have an anti-inflammatory activity by increasing in vitro interleukin-10 (IL-10) production by LPS-stimulated dendritic cells. We further show that in the d-galactosamine (d-galN)/LPS-dependent lethality model, intraperitoneal injection of GBZ promoted mice survival, prevented liver damage, increased IL-10 levels, and inhibited TNF-α production. GBZ and its derivatives could therefore represent an interesting pharmacological solution to control systemic inflammation and associated acute liver failure

    Age-adapted percentiles of measured glomerular filtration in healthy individuals:extrapolation to living kidney donors over 65 years

    Get PDF
    OBJECTIVES: Most data on glomerular filtration rate (GFR) originate from subjects <65 years old, complicating decision-making in elderly living kidney donors. In this retrospective multi-center study, we calculated percentiles of measured GFR (mGFR) in donors <65 years old and extrapolated these to donors ≥65 years old. METHODS: mGFR percentiles were calculated from a development cohort of French/Belgian living kidney donors <65 years (n=1,983), using quantiles modeled as cubic splines (two linear parts joining at 40 years). Percentiles were extrapolated and validated in an internal cohort of donors ≥65 years (n=147, France) and external cohort of donors and healthy subjects ≥65 years (n=329, Germany, Sweden, Norway, France, The Netherlands) by calculating percentages within the extrapolated 5th-95th percentile (P5-P95). RESULTS: Individuals in the development cohort had a higher mGFR (99.9 ± 16.4 vs. 86.4 ± 14 and 82.7 ± 15.5 mL/min/1.73 m(2)) compared to the individuals in the validation cohorts. In the internal validation cohort, none (0%) had mGFR below the extrapolated P5, 12 (8.2%) above P95 and 135 (91.8%) between P5-P95. In the external validation cohort, five subjects had mGFR below the extrapolated P5 (1.5%), 25 above P95 (7.6%) and 299 (90.9%) between P5-P95. CONCLUSIONS: We demonstrate that extrapolation of mGFR from younger donors is possible and might aid with decision-making in elderly donors

    Developing a preference-based utility scoring algorithm for the Psoriasis Area Severity Index (PASI)

    Get PDF
    Introduction It is challenging to identify health state utilities associated with psoriasis because generic preference-based measures may not capture the impact of dermatological symptoms. The Psoriasis Area Severity Index (PASI) is one of the most commonly used psoriasis rating scales in clinical trials. The purpose of this study was to develop a utility scoring algorithm for the PASI. Methods Forty health states were developed based on PASI scores of 40 clinical trial patients. Health states were valued in time trade-off interviews with UK general population participants. Regression models were conducted to crosswalk from PASI scores to utilities (e.g., OLS linear, random effects, mean, robust, spline, quadratic). Results A total of 245 participants completed utility interviews (51.4% female; mean age =45.3y). Models predicting utility based on the four PASI location scores (head, upper limbs, trunk, lower limbs) had better fit/accuracy (e.g., R2, mean absolute error [MAE]) than models using the PASI total score. Head/upper limb scores were more strongly associated with utility than trunk/lower limb. The recommended model is the OLS linear model based on the four PASI location scores (R2 = 0.13; MAE =0.03). An alternative is recommended for situations when it is necessary to estimate utility based on the PASI total score. Conclusions The recommended scoring algorithm may be used to estimate utilities based on PASI scores of any treatment group with psoriasis. Because the PASI is commonly used in psoriasis clinical trials, this scoring algorithm greatly expands options for quantifying treatment outcomes in cost-effectiveness analyses of psoriasis therapies. Results indicate that psoriasis of the head/upper limbs could be more important than trunk/lower limbs, suggesting reconsideration of the standard PASI scoring approach

    In vitro and in vivo activity of the chloroaryl-substituted imidazole viniconazole against Trypanosoma cruzi

    Get PDF
    Chagas disease (CD) is caused by the intracellular protozoan parasite Trypanosoma cruzi and affects more than 10 million people in poor areas of Latin America. There is an urgent need for alternative drugs with better safety, broader efficacy, lower costs and shorter time of administration. Thus the biological activity of viniconazole, a chloroaryl-substituted imidazole was investigated using in vitro and in vivo screening models of T. cruzi infection. Ultrastructural findings demonstrated that the most frequent cellular damage was associated with plasma membrane (blebs and shedding events), Golgi (swelling aspects) and the appearance of large numbers of vacuoles suggesting an autophagic process. Our data demonstrated that although this compound is effective against bloodstream and intracellular forms (16 and 24μ m, respectively) in vitro, it does not present in vivo efficacy. Due to the urgent need for novel agents against T. cruzi, the screening of natural and synthetic products must be further supported with the aim of finding more selective and affordable drugs for C
    corecore