2,825 research outputs found
The Hubbard model on a complete graph: Exact Analytical results
We derive the analytical expression of the ground state of the Hubbard model
with unconstrained hopping at half filling and for arbitrary lattice sites.Comment: Email:[email protected]
Entropy bounds, monotonicity properties and scaling in CFTs
We study the ratio of the entropy to the total energy in conformal field
theories at finite temperature. For the free field realizations of {\cal N}=4
super Yang-Mills theory in D=4 and the (2,0) tensor multiplet in D=6, the ratio
is bounded from above. The corresponding bounds are less stringent than the
recently proposed Verlinde bound. We show that entropy bounds arise generically
in CFTs in connection to monotonicity properties with respect to temperature
changes of a generalized C-function. For strongly coupled CFTs with AdS duals,
we show that the ratio obeys the Verlinde bound even in the presence of
rotation. For such CFTs, we point out an intriguing resemblance in their
thermodynamic formulas with the corresponding ones of two-dimensional CFTs. We
show that simple scaling forms for the free energy and entropy of CFTs with AdS
duals reproduce the thermodynamical properties of (D+1)-dimensional AdS black
holes.Comment: 19p, LaTeX, v2 minor clarifications and added references, v3 version
to appear in NP
Fine Structure Discussion of Parity-Nonconserving Neutron Scattering at Epithermal Energies
The large magnitude and the sign correlation effect in the parity
non-conserving resonant scattering of epithermal neutrons from Th is
discussed in terms of a non-collective local doorway model. General
conclusions are drawn as to the probability of finding large parity violation
effects in other regions of the periodic table.Comment: 6 pages, Tex. CTP# 2296, to appear in Z. Phys.
A glassy contribution to the heat capacity of hcp He solids
We model the low-temperature specific heat of solid He in the hexagonal
closed packed structure by invoking two-level tunneling states in addition to
the usual phonon contribution of a Debye crystal for temperatures far below the
Debye temperature, . By introducing a cutoff energy in the
two-level tunneling density of states, we can describe the excess specific heat
observed in solid hcp He, as well as the low-temperature linear term in the
specific heat. Agreement is found with recent measurements of the temperature
behavior of both specific heat and pressure. These results suggest the presence
of a very small fraction, at the parts-per-million (ppm) level, of two-level
tunneling systems in solid He, irrespective of the existence of
supersolidity.Comment: 11 pages, 4 figure
The Kentucky Noisy Monte Carlo Algorithm for Wilson Dynamical Fermions
We develop an implementation for a recently proposed Noisy Monte Carlo
approach to the simulation of lattice QCD with dynamical fermions by
incorporating the full fermion determinant directly. Our algorithm uses a
quenched gauge field update with a shifted gauge coupling to minimize
fluctuations in the trace log of the Wilson Dirac matrix. The details of tuning
the gauge coupling shift as well as results for the distribution of noisy
estimators in our implementation are given. We present data for some basic
observables from the noisy method, as well as acceptance rate information and
discuss potential autocorrelation and sign violation effects. Both the results
and the efficiency of the algorithm are compared against those of Hybrid Monte
Carlo.
PACS Numbers: 12.38.Gc, 11.15.Ha, 02.70.Uu Keywords: Noisy Monte Carlo,
Lattice QCD, Determinant, Finite Density, QCDSPComment: 30 pages, 6 figure
Holographic principle in the BDL brane cosmology
We study the holographic principle in the brane cosmology. Especially we
describe how to accommodate the 5D anti de Sitter Schwarzschild (AdSS)
black hole in the Binetruy-Deffayet-Langlois (BDL) approach of brane cosmology.
It is easy to make a connection between a mass of the AdSS black hole
and a conformal field theory (CFT)-radiation dominated universe on the brane in
the moving domain wall approach. But this is not established in the BDL
approach. In this case we use two parameters in the Friedmann
equation. These arise from integration and are really related to the choice of
initial bulk matter. If one chooses a bulk energy density to account
for a mass of the AdSS black hole and the static fifth dimension, a
CFT-radiation term with comes out from the bulk
matter without introducing a localized matter distribution on the brane. This
means that the holographic principle can be established in the BDL brane
cosmology.Comment: 9 pages, a version to appear in PR
A slow gravity compensated Atom Laser
We report on a slow guided atom laser beam outcoupled from a Bose-Einstein
condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser
beam can be controlled by compensating the gravitational acceleration and we
reach residual accelerations as low as 0.0027 g. The outcoupling mechanism
allows for the production of a constant flux of 4.5x10^6 atoms per second and
due to transverse guiding we obtain an upper limit for the mean beam width of
4.6 \mu\m. The transverse velocity spread is only 0.2 mm/s and thus an upper
limit for the beam quality parameter is M^2=2.5. We demonstrate the potential
of the long interrogation times available with this atom laser beam by
measuring the trap frequency in a single measurement. The small beam width
together with the long evolution and interrogation time makes this atom laser
beam a promising tool for continuous interferometric measurements.Comment: 7 pages, 8 figures, to be published in Applied Physics
Frozen spatial chaos induced by boundaries
We show that rather simple but non-trivial boundary conditions could induce
the appearance of spatial chaos (that is stationary, stable, but spatially
disordered configurations) in extended dynamical systems with very simple
dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion
equation in a two-dimensional undulated domain. Concepts from the theory of
dynamical systems, and a transverse-single-mode approximation are used to
describe the spatially chaotic structures.Comment: 9 pages, 6 figures, submitted for publication; for related work visit
http://www.imedea.uib.es/~victo
Impurity-induced transition and impurity-enhanced thermopower in the thermoelectric oxide NaCo_{2-x}Cu_x$O_4
Various physical quantities are measured and analysed for the Cu-substituted
thermoelectric oxide NaCo_{2-x}Cu_xO_4. As was previously known, the
substituted Cu enhances the thermoelectric power, while it does not increase
the resistivity significantly. The susceptibility and the electron
specific-heat are substantially decreased with increasing x, which implies that
the substituted Cu decreases the effective-mass enhancement. Through a
quantitative comparison with the heavy fermion compounds and the valence
fluctuation systems, we have found that the Cu substitution effectively
increases the coupling between the conduction electron and the magnetic
fluctuation. The Cu substitution induces a phase transition at 22 K that is
very similar to a spin-density-wave transition.Comment: 8 pages, 7 figures, submitted to Phys. Rev.
- …
