5,650 research outputs found

    COMPARISON ANALYSIS OF CORRELATIONS FOR INTERFACIAL FRICTION FACTOR APPLIED IN GAS-LIQUID ANNULAR FLOW IN VERTICAL PIPES

    Get PDF
    Gas-liquid flows in pipes can occur in the form of an annular pattern in which the liquid flows as a thin film at pipe wall and the gas flows as a core in pipe center. This flow pattern is often encountered at boiling and condensation processes, for example, in industries of steam generation, cooling or petroleum. In annular flow, the interfacial friction factor is one of the important closing parameters for the definition of the interfacial shear stress and consequently the pressure gradient. In the literature, several correlations are found to estimate the interfacial friction factor. The main objective of this work is to carry out a comparative analysis of some these correlations against experimental data also obtained from the literature. The features and limitations of each correlation were observed, as well as the accuracy of each in relation to experimental data. The results obtained demonstrate that correlations analyzed, present relatively satisfactory results, despite the different characteristics of the correlations, however, it is necessary to carry out more extensive analyses involving others correlations and sets of experimental data

    Numerical Simulation of Magnetic Interactions in Polycrystalline YFeO3

    Full text link
    The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M(H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field (H_E = 5590 kOe), anisotropy field (H_A = 0.5 kOe) and Dzyaloshinsky-Moriya antisymmetric field (H_D = 149 kOe) are in good agreement with previous reports on this system.Comment: 26 pages, 9 figure

    COMPARISON ANALYSIS OF CORRELATIONS FOR INTERFACIAL FRICTION FACTOR APPLIED IN GAS-LIQUID ANNULAR FLOW IN VERTICAL PIPES

    Get PDF
    Gas-liquid flows in pipes can occur in the form of an annular pattern in which the liquid flows as a thin film at pipe wall and the gas flows as a core in pipe center. This flow pattern is often encountered at boiling and condensation processes, for example, in industries of steam generation, cooling or petroleum. In annular flow, the interfacial friction factor is one of the important closing parameters for the definition of the interfacial shear stress and consequently the pressure gradient. In the literature, several correlations are found to estimate the interfacial friction factor. The main objective of this work is to carry out a comparative analysis of some these correlations against experimental data also obtained from the literature. The features and limitations of each correlation were observed, as well as the accuracy of each in relation to experimental data. The results obtained demonstrate that correlations analyzed, present relatively satisfactory results, despite the different characteristics of the correlations, however, it is necessary to carry out more extensive analyses involving others correlations and sets of experimental data

    Gemini and Chandra observations of Abell 586, a relaxed strong-lensing cluster

    Full text link
    We analyze the mass content of the massive strong-lensing cluster Abell 586 (z=0.17z = 0.17). We use optical data (imaging and spectroscopy) obtained with the Gemini Multi-Object Spectrograph (GMOS) mounted on the 8-m Gemini-North telescope, together with publicly available X-ray data taken with the \textit{Chandra} space telescope. Employing different techniques -- velocity distribution of galaxies, weak gravitational lensing, and X-ray spatially resolved spectroscopy -- we derive mass and velocity dispersion estimates from each of them. All estimates agree well with each other, within a 68% confidence level, indicating a velocity dispersion of 1000 -- 1250 \kms. The projected mass distributions obtained through weak-lensing and X-ray emission are strikingly similar, having nearly circular geometry. We suggest that Abell 586 is probably a truly relaxed cluster, whose last major merger occurred more than 4\sim 4 Gyr agoComment: ApJ accepted, 20 pages, 11 figures; Figure 1 fixe

    Nonextensive Thermostatistics and the H-Theorem

    Full text link
    The kinetic foundations of Tsallis' nonextensive thermostatistics are investigated through Boltzmann's transport equation approach. Our analysis follows from a nonextensive generalization of the ``molecular chaos hypothesis". For q>0q>0, the qq-transport equation satisfies an HH-theorem based on Tsallis entropy. It is also proved that the collisional equilibrium is given by Tsallis' qq-nonextensive velocity distribution.Comment: 4 pages, no figures, corrected some typo

    Accelerating Cold Dark Matter Cosmology (ΩΛ0\Omega_{\Lambda}\equiv 0)

    Full text link
    A new kind of accelerating flat model with no dark energy that is fully dominated by cold dark matter (CDM) is investigated. The number of CDM particles is not conserved and the present accelerating stage is a consequence of the negative pressure describing the irreversible process of gravitational particle creation. A related work involving accelerating CDM cosmology has been discussed before the SNe observations [Lima, Abramo & Germano, Phys. Rev. D53, 4287 (1996)]. However, in order to have a transition from a decelerating to an accelerating regime at low redshifts, the matter creation rate proposed here includes a constant term of the order of the Hubble parameter. In this case, H0H_0 does not need to be small in order to solve the age problem and the transition happens even if the matter creation is negligible during the radiation and part of the matter dominated phase. Therefore, instead of the vacuum dominance at redshifts of the order of a few, the present accelerating stage in this sort of Einstein-de Sitter CDM cosmology is a consequence of the gravitational particle creation process. As an extra bonus, in the present scenario does not exist the coincidence problem that plagues models with dominance of dark energy. The model is able to harmonize a CDM picture with the present age of the universe, the latest measurements of the Hubble parameter and the Supernovae observations.Comment: 9 pages, 6 figures, typos corrected, references added, discussion in Appendix B extende

    Extended DFT+U+V method with on-site and inter-site electronic interactions

    Full text link
    In this article we introduce a generalization of the popular DFT+U method based on the extended Hubbard model that includes on-site and inter-site electronic interactions. The novel corrective Hamiltonian is designed to study systems for which electrons are not completely localized on atomic states (according to the general scheme of Mott localization) and hybridization between orbitals from different sites plays an important role. The application of the extended functional to archetypal Mott - charge-transfer (NiO) and covalently bonded insulators (Si and GaAs) demonstrates its accuracy and versatility and the possibility to obtain a unifying and equally accurate description for a broad range of very diverse systems

    Two spectroscopically confirmed galaxy structures at z=0.61 and 0.74 in the CFHTLS Deep~3 field

    Full text link
    Adami et al. (2010) have detected several cluster candidates at z>0.5 as part of a systematic search for clusters in the Canada France Hawaii Telescope Legacy Survey, based on photometric redshifts. We focus here on two of them, located in the D3 field: D3-6 and D3-43. We have obtained spectroscopy with Gemini/GMOS and measured redshifts for 23 and 14 galaxies in the two structures. These redshifts were combined with those available in the literature. A dynamical and a weak lensing analysis were also performed, together with the study of X-ray Chandra archive data. Cluster D3-6 is found to be a single structure of 8 spectroscopically confirmed members at an average redshift z=0.607, with a velocity dispersion of 423 km/s. It appears to be a relatively low mass cluster. D3-43-S3 has 46 spectroscopically confirmed members at an average redshift z=0.739. It can be decomposed into two main substructures, having a velocity dispersion of about 600 and 350 km/s. An explanation to the fact that D3-43-S3 is detected through weak lensing (only marginally, at the ~3sigma level) but not in X-rays could be that the two substructures are just beginning to merge more or less along the line of sight. We also show that D3-6 and D3-43-S3 have similar global galaxy luminosity functions, stellar mass functions, and star formation rate (SFR) distributions. The only differences are that D3-6 exhibits a lack of faint early type galaxies, a deficit of extremely high stellar mass galaxies compared to D3-43-S3, and an excess of very high SFR galaxies. This study shows the power of techniques based on photometric redshifts to detect low to moderately massive structures, even at z~0.75.Comment: Accepted in A&A, final version, shortened abstrac
    corecore