37 research outputs found

    Input of terrestrial organic matter linked to deglaciation increased mercury transport to the Svalbard fjords

    Get PDF
    Deglaciation has accelerated the transport of minerals as well as modern and ancient organic matter from land to fjord sediments in Spitsbergen, Svalbard, in the European Arctic Ocean. Consequently, such sediments may contain significant levels of total mercury (THg) bound to terrestrial organic matter. The present study compared THg contents in surface sediments from three fjord settings in Spitsbergen: Hornsund in the southern Spitsbergen, which has high annual volume of loss glacier and receives sediment from multiple tidewater glaciers, Dicksonfjorden in the central Spitsbergen, which receives sediment from glacifluvial rivers, and Wijdefjorden in the northern Spitsbergen, which receive sediments from a mixture of tidewater glaciers and glacifluvial rivers. Our results showed that the THg (52 +/- 15 ng g(-1)) bound to organic matter (OM) was the highest in the Hornsund surface sediments, where the glacier loss (0.44 km(3) yr(-1)) and organic carbon accumulation rates (9.3 similar to 49.4 g m(-2) yr(-1)) were elevated compared to other fjords. Furthermore, the delta C-13 (-27 similar to -24 parts per thousand) and delta S-34 values (-10 similar to 15 parts per thousand) of OM indicated that most of OM were originated from terrestrial sources. Thus, the temperature-driven glacial melting could release more OM originating from the meltwater or terrestrial materials, which are available for THg binding in the European Arctic fjord ecosystems.11Ysciescopu

    Enhanced volcanic activity and long-term warmth in the middle Eocene revealed by mercury and osmium isotopes from IODP Expedition 369 Site U1514

    Get PDF
    Rapid plate reorganization may have influenced global climate during the Eocene; however, its linkage remains poorly constrained, particularly during the middle Eocene. To elucidate this tectonic–climatic relationship, here, we conducted a comprehensive analysis based on high-resolution mercury (Hg) and osmium (Os) abundance and isotope data obtained from the complete Eocene sedimentary sequence of Site U1514, drilled in the Mentelle Basin off southwest Australia. The Hg signals in this sedimentary sequence, which are characterized by significantly high enrichment and insignificant mass-independent fractionation (Δ199Hg) signal, confirm that the middle Eocene (∼45–38 Ma) was a period of persistent, increased volcanism, accompanied by intense tectonic activity. In particular, a remarkable seafloor volcanic eruption persisted for approximately 1.5 million years (∼42.0–40.5 Ma), immediately preceding the Middle Eocene Climate Optimum (MECO). Contemporaneously, the trends toward a slightly more radiogenic seawater 187Os/188Os (Osi) composition denote the prevalence of intensified continental weathering under a warm, humid climate during the middle Eocene, a phenomenon particularly evident during the MECO. Importantly, the Hg and Os records from Site U1514 reveal the occurrence of a multi-million-year warming reversal amid the long-term Eocene cooling trend, which likely contributed to significant CO2 reduction during the late Eocene. These findings significantly enhance our understanding of Eocene climate dynamics, which are fundamentally linked to intensive tectonic-driven volcanic activity and associated continental chemical weathering

    Topography, structural and exhumation history of the Admiralty Mountains region, northern Victoria Land, Antarctica

    Get PDF
    International audience; The Admiralty Mountains region forms the northern termination of the northern Victoria Land, Antarctica. Few quantitative data are available to reconstruct the Cenozoic morpho-tectonic evolution of this sector of the Antarctic plate, where the Admiralty Mountains region forms the northern termination of the western shoulder of the Mesozoic-Cenozoic West Antarctica Rift System. In this study we combine new low-temperature thermochronological data (apatite fission-track and (U-Th-Sm)/He analyses) with structural and topography analysis. The regional pattern of the fission-track ages shows a general tendency to older ages (80–60 Ma) associated with shortened mean track-lengths in the interior, and younger fission-track ages clustering at 38–26 Ma with long mean track-lengths in the coastal region. Differently from other regions of Victoria Land, the younger ages are found as far as 50–70 km inland. Single grain apatite (U-Th-Sm)/He ages cluster at 50–30 Ma with younger ages in the coastal domain. Topography analysis reveals that the Admiralty Mountains has high local relief, with an area close to the coast, 180 km long and 70 km large, having the highest local relief of >2500 m. This coincides with the location of the youngest fission-track ages. The shape of the area with highest local relief matches the shape of a recently detected low velocity zone beneath the northern TAM, indicating that high topography of the Admiralty Mountains region is likely sustained by a mantle thermal anomaly. We used the obtained constraints on the amount of removed crustal section to reconstruct back-eroded profiles and calculate the erosional load in order to test flexural uplift models. We found that our back-eroded profiles are better reproduced by a constant elastic thickness of intermediate values (Te = 20–30 km). This suggests that, beneath the Admiralty Mountains, the elastic properties of the lithosphere are different with respect to other TAM sectors, likely due to a stationary Cenozoic upper mantle thermal anomaly in the region

    Tectonic and climatic controls on sediment transport to the Southeast Indian Ocean during the Eocene: New insights from IODP Site U1514

    No full text
    International audienceThe Eocene was a critical period of global plate reorganization and it also saw the Earth's climate transition from the warmhouse state to the coolhouse state. Reconstructing the Eocene sedimentary history in the climate-sensitive Southern Ocean is important for understanding paleoenvironmental changes in response to the accelerated Australia/Antarctica separation and global cooling throughout the middle and late Eocene. Here, we present the first detailed multiproxy record of a continuous sequence from International Ocean Discovery Program (IODP) Site U1514 in the Mentelle Basin off southwestern Australia. Our aim is to reconstruct the sediment provenances and paleoenvironmental evolution in response to the abovementioned climatic and tectonic changes in the mid-high southern latitudes during the Eocene. Provenance analyses based on Sr-Nd isotopes, trace elements, and clay mineral assemblages suggest that Eocene sediments at Site U1514 predominantly originated from the southwestern Australian continent and the Naturaliste Plateau. Sediment provenance variations during the middle Eocene indicate that the onset of fast separation between Australia and Antarctica at 43 Ma caused an increased supply of volcanic materials from the Naturaliste Plateau between 43 and 38 Ma. Terrigenous inputs to the Mentelle Basin during the middle Eocene were primarily controlled by paleoclimate changes rather than tectonic processes because coeval clay mineralogical changes (higher kaolinite/smectite ratio and MARkaolinite) indicate a period of stronger physical erosion and chemical weathering on the western Australian continent that resulted in increased terrigenous materials delivered to the Mentelle Basin. Our results reveal a 5 Myr-long (43-38 Ma) warming reversal in the southern mid-high latitudes, providing an exception to the generally short-lived (10-100 kyr-long) hyperthermals that interrupted the long-term global cooling throughout the middle to late Eocene. As for the late Eocene (38-37 Ma), tectonic processes related to the sudden acceleration in seafloor spreading in the Tasman Sea led to the exposure of shallower areas, resulting in rapid detritus accumulation at the study site. During the late Eocene (37-34 Ma), major sediment provenance shifted from distal source areas (e.g., the Yilgarn Craton) to relatively proximal sources (e.g., the Leeuwin Block and Perth Basin). We interpret that the regional uplift in southwestern Australia and coeval climate cooling resulted in the diversion and inactivation of large drainage systems, thus blocking the transportation of sediment from distant regions

    Bathyal records of enhanced silicate erosion and weathering on the exposed Luzon shelf during glacial lowstands and their significance for atmospheric CO\u3csub\u3e2\u3c/sub\u3e sink

    No full text
    © 2017 Elsevier B.V. We present a new high-resolution multiproxy data set of mass accumulation rates, Sr-Nd isotopes, as well as major and trace elements for the siliciclastic sediment fraction from International Marine Global Change Study Core MD06-3052, located on the continental slope of the western Philippine Sea. We integrate our new data with published grain sizes and sea surface temperatures from the same core, as well as with Equatorial Pacific sea level, and East Asian summer monsoon precipitation, in order to constrain at high-resolution changes in physical erosion and chemical weathering intensities on Luzon, and sediment source-to-sink processes. We assess the potential significance of chemical weathering of arc silicates in regulating global atmospheric CO2 since 156 kyr BP. Sr-Nd isotopes show that the siliciclastic sediments were dominantly sourced from volcanic rocks exposed on Luzon (~ 68–100%), with a lesser contribution from Asian dust (~ 0–32%). Different indices indicate that stronger physical erosion and chemical weathering occurred during Marine Isotope Stage (MIS) 6 (130–156 kyr BP), as well as in the latter stage of MIS 3 and MIS 2 (14–40 kyr BP). The large sea-level lowstands and associated significant exposure of continental shelf in the western Philippine Sea during these two cold periods should favor physical erosion and chemical weathering of unconsolidated sediments on the exposed shelf. Furthermore, we notice the relatively good coherence between chemical weathering intensities on Luzon and global atmospheric CO2 concentrations over these cold intervals. We suggest that strengthening of chemical weathering of silicates on Luzon and other tropical arcs (within 20° of the Equator) during the Quaternary glacial sea-level lowstands may significantly contribute to the lowering of atmospheric CO2 concentrations during ice ages. We estimate that a significant fraction, up to ~ 16% (i.e., ~ 8 ppmv), of all atmospheric CO2 ultimately sequestered by silicate weathering may be processed through an area corresponding to only ~ 1% of the exorheic drainage area worldwide

    Enhancement of volcanic eruption in mid-ocean ridge during the last deglaciation: New sedimentary evidence in the middle part of Central Indian Ridge

    No full text
    Sedimentary evidence for enhanced volcanic eruption during the glacial/interglacial transition in the volcanically active mid-ocean ridges is still lacking. Here, we present the sedimentary records of enhanced deglacial volcanic activity in a well-dated sediment core from the middle part of Central Indian Ridge (CIR), which can provide clue for comprehensively understanding of the temporal relation of increase in submarine volcanism relative to glacial/interglacial transition. Notably, the 35-kyr sediment core used in this study contains continuous, discernible pyroclastic deposit layers (0.5–5 cm thick), which are composed mainly of angular and curved fluidal shards with vesicles, possibly suggesting volatile-rich ridge eruptions. High-resolution elemental profiles of the core provide definite records of at least 17 volcanic eruptions during the past 35 kyr. Interestingly, volcanism was sparse during the Last Glacial Maximum (LGM), but increased significantly during the last deglaciation after ~18 kyr BP. The last deglaciation-associated volcanic eruptions in the CIR may be linked to decompression melting during the LGM sea-level lowstand, reaffirming an influence of sea level variability on global ocean ridge magmatism. Combining the previous results, furthermore, simultaneous strengthening of submarine and subaerial volcanic eruptions during the last deglaciation could have accelerated the rise of atmospheric CO2, with the ensuing warming constituting positive feedback upon deglaciation. Highlights • A succession of pyroclastic records in a well-dated sediment core from the CIR was identified. • The morphologies of the pyroclasts are consistent with volatile-rich submarine eruption. • Deglaciation-associated enhanced volcanism seems robust in the mid-ocean ridges. • Tentative support for a link between ridge volcanism and climate change is provided

    Orbital-scale evolution of the Indian summer monsoon since 1.2 Ma: Evidence from clay mineral records at IODP Expedition 355 Site U1456 in the eastern Arabian Sea

    No full text
    © 2018 Elsevier Ltd Clay mineral assemblages at International Ocean Discovery Program Expedition 355 Site U1456 drilled in the eastern Arabian Sea have been investigated to reveal the sediment provenances and reconstruct the erosion/weathering patterns in the western Himalaya and Indian subcontinent, thus constraining the evolution of the Indian summer monsoon and its forcing mechanism since 1.2 Ma. The clay mineral assemblages at Site U1456 mainly comprise smectite (with an average value of 59%) and illite (with an average value of 33%), with chlorite (with an average value of 5%) and kaolinite (with an average value of 3%) as minor constituents. In terms of sediment provenance, our results indicate that illite and chlorite are predominantly derived from the Indus River, which originates from the western Himalaya and Karakoram, while smectite is primarily sourced from the Narmada River and Tapti River in the Deccan Traps, with a non-negligible contribution from the Indus River in some cases. Variations in smectite/(illite + chlorite) ratio are ultimately controlled by the Indian summer monsoon, which is characterized by approximate glacial/interglacial cyclicity, showing higher values (i.e., enhanced chemical weathering) during interglacial periods. In addition, a major shift in smectite/(illite + chlorite) ratio at 0.9 Ma is correlated to the Mid-Pleistocene Transition (∼1.2–0.9 Ma). Both the Marine Isotope Stage 13 event (533–478 ka) and the Mid-Brunhes Event (∼430 ka) are also recorded in the clay mineral proxies. Based on the spectral analysis, smectite/(illite + chlorite) ratio displays a transition from nonprimary periodicity (29-kyr) to strong eccentricity (100-kyr) and precession (22-kyr) periodicities at approximately 0.9 Ma, which corresponds to the Mid-Pleistocene Transition. Our study indicates that the variability of the Indian summer monsoon at orbital timescales is controlled by high-latitude (i.e., ice volume) and low-latitude (i.e., summer insolation) processes

    Microbial alteration in marine sediments: Insights from compound-specific isotopic compositions of amino acids in subseafloor environments

    No full text
    The proportion of amino acids (AAs) in sediment can be used as an indicator of microbial degradation, which is primarily the product of benthic prokaryote activity. The microbial activity would be reflected with the stable isotope ratio of nitrogen (δ15N) at the time of mineralization and resynthesis of AAs. In this study, the compound-specific isotope analysis of individual AAs was used to investigate δ15N variation associated with microbial processes in marine sediment samples. Our results showed a decrease in AA concentrations in core-top sediment was accompanied by an increase in δ15N values, suggesting large 15N enrichment in buried AAs. Phenylalanine displayed an increase in δ15N from the surface to depths greater than 2 cm, whereas relatively constant δ15N values at depths below 2 cm, suggesting that microbial utilization of phenylalanine varies with depth. Glycine showed the highest relative molar contribution (from 12.1 to 36.4%), with the largest δ15N increase (from 0.8 to 8.7) in deep sediment, implying that such information can serve as a measure of AA diagenesis in sedimentary environments. Our results also indicated that the δ15N values of individual AAs in sediment reflected the microbial alteration of organic matter at water-sediment interfaces and in sub-surface environments. These findings form an important basis for interpreting the δ15N values of AAs in sediment. Copyright © 2022 Choi, Choi, Chikaraishi, Takano, Kim, Lee, Lim and Shin.11Ysciescopu
    corecore