241 research outputs found

    Exploring temporal information in neonatal seizures using a dynamic time warping based SVM kernel

    Get PDF
    Seizure events in newborns change in frequency, morphology, and propagation. This contextual information is explored at the classifier level in the proposed patient-independent neonatal seizure detection system. The system is based on the combination of a static and a sequential SVM classifier. A Gaussian dynamic time warping based kernel is used in the sequential classifier. The system is validated on a large dataset of EEG recordings from 17 neonates. The obtained results show an increase in the detection rate at very low false detections per hour, particularly achieving a 12% improvement in the detection of short seizure events over the static RBF kernel based system

    Toward a personalized real-time diagnosis in neonatal seizure detection

    Get PDF
    The problem of creating a personalized seizure detection algorithm for newborns is tackled in this paper. A probabilistic framework for semi-supervised adaptation of a generic patient-independent neonatal seizure detector is proposed. A system that is based on a combination of patient-adaptive (generative) and patient-independent (discriminative) classifiers is designed and evaluated on a large database of unedited continuous multichannel neonatal EEG recordings of over 800 h in duration. It is shown that an improvement in the detection of neonatal seizures over the course of long EEG recordings is achievable with on-the-fly incorporation of patient-specific EEG characteristics. In the clinical setting, the employment of the developed system will maintain a seizure detection rate at 70% while halving the number of false detections per hour, from 0.4 to 0.2 FD/h. This is the first study to propose the use of online adaptation without clinical labels, to build a personalized diagnostic system for the detection of neonatal seizures

    Use of a saliva-based diagnostic test to identify tapeworm infection in horses in the UK

    Get PDF
    Background: Anthelmintic resistance combined with limited chemotherapeutic options has prompted a change in approaches to control of equine helminth infections. Targeted selective treatment strategies use diagnostics to reduce anthelmintic use by treating individuals with worm burdens or egg shedding levels above a set threshold. While faecal egg count analysis has limitations for informing tapeworm treatment, a commercially available saliva-based diagnostic test accurately diagnoses horses with tapeworm infection. Objectives: Evaluation of a saliva-based diagnostic test to identify horses naturally infected with tapeworm and assess the impact of using the test to inform anthelmintic administration. Study design: Retrospective longitudinal study. Methods: Saliva was collected from horses (n = 237) at a UK welfare charity from autumn 2015 to autumn 2016. Horses diagnosed as positive for tapeworm infection using the EquiSal® Tapeworm test were anthelmintic treated according to weight. The number of horses that received anthelmintic treatment based on the test result was compared with an all-group treatment approach and the reduction in anthelmintic usage calculated. Incoming horses were also tested (n = 143) and the information was used to inform quarantine treatments. Results: In autumn 2015, 85% of 237 horses tested received no anthelmintic and the majority (71%) of these remained below the treatment threshold throughout the study. Of the 69 horses that received treatment, seven required treatment following three subsequent tests, while >50% of horses administered with anthelmintic fell below the treatment threshold at the following test. No increase in tapeworm prevalence within the 237 horses was observed during the study despite a substantial reduction in the application of antitapeworm treatments. A total of 41% of incoming horses required anticestode treatment. Main limitations: Other management practices were not included in the analysis. Conclusions: Compared with an all-group treatment strategy, the diagnostic-led approach used here considerably reduced application of anticestode anthelmintics. This could reduce selection pressure for anthelmintic resistance

    QSRlib: a software library for online acquisition of qualitative spatial relations from video

    Get PDF
    There is increasing interest in using Qualitative Spatial Relations as a formalism to abstract from noisy and large amounts of video data in order to form high level conceptualisations, e.g. of activities present in video. We present a library to support such work. It is compatible with the Robot Operating System (ROS) but can also be used stand alone. A number of QSRs are built in; others can be easily added

    Neonatal EEG graded for severity of background abnormalities in hypoxic-ischaemic encephalopathy

    Full text link
    This report describes a set of neonatal electroencephalogram (EEG) recordings graded according to the severity of abnormalities in the background pattern. The dataset consists of 169 hours of multichannel EEG from 53 neonates recorded in a neonatal intensive care unit. All neonates received a diagnosis of hypoxic-ischaemic encephalopathy (HIE), the most common cause of brain injury in full term infants. For each neonate, multiple 1-hour epochs of good quality EEG were selected and then graded for background abnormalities. The grading system assesses EEG attributes such as amplitude and frequency, continuity, sleep--wake cycling, symmetry and synchrony, and abnormal waveforms. Background severity was then categorised into 4 grades: normal or mildly abnormal EEG, moderately abnormal EEG, severely abnormal EEG, and inactive EEG. The data can be used as a reference set of multi-channel EEG for neonates with HIE, for EEG training purposes, or for developing and evaluating automated grading algorithms

    Systematics of 2+ states in C isotopes from the ab initio no-core shell model

    Full text link
    We study low-lying states of even carbon isotopes in the range A = 10 - 20 within the large- scale no-core shell model (NCSM). Using several accurate nucleon-nucleon (NN) as well as NN plus three-nucleon (NNN) interactions, we calculate excitation energies of the lowest 2+ state, the electromagnetic B(E2; 2+1 -> 0+1) transition rates, the 2+1 quadrupole moments as well as se- lected electromagnetic transitions among other states. Recent experimental campaigns to measure 2+-state lifetimes indicate an interesting evolution of nuclear structure that pose a challenge to reproduce theoretically from first principles. Our calculations do not include any effective charges or other fitting parameters. However, calculated results extrapolated to infinite model spaces are also presented. The model-dependence of those results is discussed. Overall, we find a good agree- ment with the experimentally observed trends, although our extrapolated B(E2; 2+1 -> 0+1) value for 16C is lower compared to the most recent measurements. Relative transition strengths from higher excited states are investigated and the influence of NNN forces is discussed. In particular for 16C we find a remarkable sensitivity of the transition rates from higher excited states to the details of the nuclear interactions.Comment: 22 pages, 8 figures, preprint version. Accepted for publication in Journal of Physics G: Nuclear and Particle Physic

    RESPOND – A patient-centred program to prevent secondary falls in older people presenting to the emergency department with a fall: Protocol for a multi-centre randomised controlled trial

    Get PDF
    Introduction: Participation in falls prevention activities by older people following presentation to the Emergency Department (ED) with a fall is suboptimal. This randomised controlled trial (RCT) will test the RESPOND program which is designed to improve older persons’ participation in falls prevention activities through delivery of patient-centred education and behaviour change strategies. Design and setting: An RCT at two tertiary referral EDs in Melbourne and Perth, Australia. Participants: Five-hundred and twenty eight community-dwelling people aged 60-90 years presenting to the ED with a fall and discharged home will be recruited. People who: require an interpreter or hands-on assistance to walk; live in residential aged care or >50 kilometres from the trial hospital; have terminal illness, cognitive impairment, documented aggressive behaviour or history of psychosis; are receiving palliative care; or are unable to use a telephone will be excluded. Methods: Participants will be randomly allocated to the RESPOND intervention or standard care control group. RESPOND incorporates: (1) home-based risk factor assessment; (2) education, coaching, goal setting, and follow-up telephone support for management of one or more of four risk factors with evidence of effective intervention; and (3) healthcare provider communication and community linkage delivered over six months. Primary outcomes are falls and fall injuries per-person-year. Discussion: RESPOND builds on prior falls prevention learnings and aims to help individuals make guided decisions about how they will manage their falls risk. Patient-centred models have been successfully trialled in chronic and cardiovascular disease however evidence to support this approach in falls prevention is limited. Trial registration. The protocol for this study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12614000336684)
    • …
    corecore