287 research outputs found

    Seroepidemiology of Toxoplasma gondii infection in pregnant women in a public hospital in northern Mexico

    Get PDF
    BACKGROUND: Toxoplasma gondii (T. gondii) infection in pregnant women represents a risk for congenital disease. There is scarce information about the epidemiology of T. gondii infection in pregnant women in Mexico. Therefore, we sought to determine the prevalence of T. gondii infection and associated socio-demographic, clinical and behavioural characteristics in a population of pregnant women of Durango City, Mexico. METHODS: Three hundred and forty three women seeking prenatal care in a public hospital of Durango City in Mexico were examined for T. gondii infection. All women were tested for anti-T. gondii IgM and IgG antibodies by using IMx Toxo IgM and IMx Toxo IgG 2.0 kits (Abbott Laboratories, Abbott Park, IL, USA), respectively. Socio-demographic, clinical and behavioural characteristics from each participant were also obtained. RESULTS: Twenty one out of the 343 (6.1%) women had IgG anti-T. gondii antibodies. None of the 343 women had IgM anti-T. gondii antibodies. Multivariate analysis using logic regression showed that T. gondii infection was associated with living in a house with soil floor (adjusted OR = 7.16; 95% CI: 1.39–36.84), residing outside of Durango State (adjusted OR = 4.25; 95% CI: 1.72–10.49), and turkey meat consumption (adjusted OR = 3.85; 95% CI: 1.30–11.44). Other characteristics as cat contact, gardening, and food preferences did not show any association with T. gondii infection. CONCLUSION: The prevalence of T. gondii infection in pregnant women of Durango City is low as compared with those reported in other regions of Mexico and the majority of other countries. Poor housing conditions as soil floors, residing in other Mexican States, and turkey meat consumption might contribute to acquire T. gondii infection

    Separated cross sections in \pi^0 electroproduction at threshold at Q^2 = 0.05 GeV^2/c^2

    Full text link
    The differential cross sections \sigma_0=\sigma_T+\epsilon \sigma_L, \sigma_{LT}, and \sigma_{TT} of \pi^0 electroproduction from the proton were measured from threshold up to an additional center of mass energy of 40 MeV, at a value of the photon four-momentum transfer of Q^2= 0.05 GeV^2/c^2 and a center of mass angle of \theta=90^\circ. By an additional out-of-plane measurement with polarized electrons \sigma_{LT'} was determined. This showed for the first time the cusp effect above the \pi^+ threshold in the imaginary part of the s-wave. The predictions of Heavy Baryon Chiral Perturbation Theory are in disagreement with these data. On the other hand, the data are somewhat better predicted by the MAID phenomenological model and are in good agreement with the dynamical model DMT.Comment: 6 pages, 4 figure

    Intestinal, extra-intestinal and systemic sequelae of Toxoplasma gondii induced acute ileitis in mice harboring a human gut microbiota

    Get PDF
    Background Within seven days following peroral high dose infection with Toxoplasma gondii susceptible conventionally colonized mice develop acute ileitis due to an underlying T helper cell (Th) -1 type immunopathology. We here addressed whether mice harboring a human intestinal microbiota developed intestinal, extra-intestinal and systemic sequelae upon ileitis induction. Methodology/Principal findings Secondary abiotic mice were generated by broad- spectrum antibiotic treatment and associated with a complex human intestinal microbiota following peroral fecal microbiota transplantation. Within three weeks the human microbiota had stably established in the murine intestinal tract as assessed by quantitative cultural and culture-independent (i.e. molecular 16S rRNA based) methods. At day 7 post infection (p.i.) with 50 cysts of T. gondii strain ME49 by gavage human microbiota associated (hma) mice displayed severe clinical, macroscopic and microscopic sequelae indicating acute ileitis. In diseased hma mice increased numbers of innate and adaptive immune cells within the ileal mucosa and lamina propria and elevated intestinal secretion of pro-inflammatory mediators including IFN-γ, IL-12 and nitric oxide could be observed at day 7 p.i. Ileitis development was accompanied by substantial shifts in intestinal microbiota composition of hma mice characterized by elevated total bacterial loads and increased numbers of intestinal Gram-negative commensals such as enterobacteria and Bacteroides / Prevotella species overgrowing the small and large intestinal lumen. Furthermore, viable bacteria translocated from the inflamed ileum to extra- intestinal including systemic compartments. Notably, pro-inflammatory immune responses were not restricted to the intestinal tract as indicated by increased pro-inflammatory cytokine secretion in extra-intestinal (i.e. liver and kidney) and systemic compartments including spleen and serum. Conclusion/Significance With respect to the intestinal microbiota composition “humanized” mice display acute ileitis following peroral high dose T. gondii infection. Thus, hma mice constitute a suitable model to further dissect the interactions between pathogens, human microbiota and vertebrate host immunity during acute intestinal inflammation

    Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via Toll-like receptors 2 and 4.

    Get PDF
    BACKGROUND: Gut bacteria trigger colitis in animal models and are suspected to aggravate inflammatory bowel diseases. We have recently reported that Escherichia coli accumulates in murine ileitis and exacerbates small intestinal inflammation via Toll-like receptor (TLR) signaling. METHODOLOGY AND PRINCIPAL FINDINGS: Because knowledge on shifts in the intestinal microflora during colitis is limited, we performed a global survey of the colon flora of C57BL/10 wild-type (wt), TLR2(-/-), TLR4(-/-), and TLR2/4(-/-) mice treated for seven days with 3.5% dextrane-sulfate-sodium (DSS). As compared to wt animals, TLR2(-/-), TLR4(-/-), and TLR2/4(-/-) mice displayed reduced macroscopic signs of acute colitis and the amelioration of inflammation was associated with reduced IFN-gamma levels in mesenteric lymph nodes, lower amounts of neutrophils, and less FOXP3-positive T-cells in the colon in situ. During acute colitis E. coli increased in wt and TLR-deficient mice (P<0.05), but the final numbers reached were significantly lower in TLR2(-/-), TLR4(-/-) and TLR2/4(-/-) animals, as compared to wt controls (P<0.01). Concentrations of Bacteroides/ Prevotella spp., and enterococci did not increase during colitis, but their numbers were significantly reduced in the colon of DSS-treated TLR2/4(-/-) animals (P<0.01). Numbers of lactobacilli and clostridia remained unaffected by colitis, irrespective of the TLR-genotype of mice. Culture-independent molecular analyses confirmed the microflora shifts towards enterobacteria during colitis and showed that the gut flora composition was similar in both, healthy wt and TLR-deficient animals. CONCLUSIONS AND SIGNIFICANCE: DSS-induced colitis is characterized by a shift in the intestinal microflora towards pro-inflammatory Gram-negative bacteria. Bacterial products exacerbate acute inflammation via TLR2- and TLR4-signaling and direct the recruitment of neutrophils and regulatory T-cells to intestinal sites. E. coli may serve as a biomarker for colitis severity and DSS-induced barrier damage seems to be a valuable model to further identify bacterial factors involved in maintaining intestinal homeostasis and to test therapeutic interventions based upon anti-TLR strategies

    The Myeloid Receptor PILRβ Mediates the Balance of Inflammatory Responses through Regulation of IL-27 Production

    Get PDF
    Paired immunoglobulin-like receptors beta, PILRβ, and alpha, PILRα, are related to the Siglec family of receptors and are expressed primarily on cells of the myeloid lineage. PILRβ is a DAP12 binding partner expressed on both human and mouse myeloid cells. The potential ligand, CD99, is found on many cell types, such as epithelial cells where it plays a role in migration of immune cells to sites of inflammation. Pilrb deficient mice were challenged with the parasite Toxoplasma gondii in two different models of infection induced inflammation; one involving the establishment of chronic encephalitis and a second mimicking inflammatory bowel disease in order to understand the potential role of this receptor in persistent inflammatory responses. It was found that in the absence of activating signals from PILRβ, antigen-presenting cells (APCs) produced increased amounts of IL-27, p28 and promoted IL-10 production in effector T cells. The sustained production of IL-27 led ultimately to enhanced survival after challenge due to dampened immune pathology in the gut. Similar protection was also observed in the CNS during chronic T. gondii infection after i.p. challenge again providing evidence that PILRβ is important for regulating aberrant inflammatory responses

    Efficient High-Dimensional Importance Sampling in Mixture Frameworks

    Full text link
    This paper provides high-dimensional and flexible importance sampling procedures for the likelihood evaluation of dynamic latent variable models involving finite or infinite mixtures leading to possibly heavy tailed and/or multi-modal target densities. Our approach is based upon the efficient importance sampling (EIS) approach of Richard and Zhang (2007) and exploits the mixture structure of the model when constructing importance sampling distributions as mixture of distributions. The proposed mixture EIS procedures are illustrated with ML estimation of a student-t state space model for realized volatilities and a stochastic volatility model with leverage effects and jumps for asset returns

    MIF Participates in Toxoplasma gondii-Induced Pathology Following Oral Infection

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) is essential for controlling parasite burden and survival in a model of systemic Toxoplasma gondii infection. Peroral T. gondii infection induces small intestine necrosis and death in susceptible hosts, and in many aspects resembles inflammatory bowel disease (IBD). Considering the critical role of MIF in the pathogenesis of IBD, we hypothesized that MIF participates in the inflammatory response induced by oral infection with T. gondii. METHODOLOGY/PRINCIPAL FINDINGS: Mif deficient (Mif(-/-)) and wild-type mice in the C57Bl/6 background were orally infected with T. gondii strain ME49. Mif(-/-) mice had reduced lethality, ileal inflammation and tissue damage despite of an increased intestinal parasite load compared to wt mice. Lack of MIF caused a reduction of TNF-α, IL-12, IFN-γ and IL-23 and an increased expression of IL-22 in ileal mucosa. Moreover, suppressed pro-inflammatory responses at the ileal mucosa observed in Mif(-/-) mice was not due to upregulation of IL-4, IL-10 or TGF-β. MIF also affected the expression of matrix metalloproteinase-9 (MMP-9) but not MMP-2 in the intestine of infected mice. Signs of systemic inflammation including the increased concentrations of inflammatory cytokines in the plasma and liver damage were less pronounced in Mif(-/-) mice compared to wild-type mice. CONCLUSION/SIGNIFICANCE: In conclusion, our data suggested that in susceptible hosts MIF controls T. gondii infection with the cost of increasing local and systemic inflammation, tissue damage and death

    The first determination of Generalized Polarizabilities of the proton by a Virtual Compton Scattering experiment

    Get PDF
    Absolute differential cross sections for the reaction (e+p -> e+p+gamma) have been measured at a four-momentum transfer with virtuality Q^2=0.33 GeV^2 and polarization \epsilon = 0.62 in the range 33.6 to 111.5 MeV/c for the momentum of the outgoing photon in the photon-proton center of mass frame. The experiment has been performed with the high resolution spectrometers at the Mainz Microtron MAMI. From the photon angular distributions, two structure functions which are a linear combination of the generalized polarizabilities have been determined for the first time.Comment: 4 pages, 3 figure

    Selection at a single locus leads to widespread expansion of toxoplasma gondii lineages that are virulent in mice

    Get PDF
    The determinants of virulence are rarely defined for eukaryotic parasites such as T. gondii, a widespread parasite of mammals that also infects humans, sometimes with serious consequences. Recent laboratory studies have established that variation in a single secreted protein, a serine/threonine kinase known as ROPO18, controls whether or not mice survive infection. Here, we establish the extent and nature of variation in ROP18among a collection of parasite strains from geographically diverse regions. Compared to other genes, ROP18 showed extremely high levels of diversification and changes in expression level, which correlated with severity of infection in mice. Comparison with an out-group demonstrated that changes in the upstream region that regulates expression of ROP18 led to an historical increase in the expression and exposed the protein to diversifying selective pressure. Surprisingly, only three atypically distinct protein variants exist despite marked genetic divergence elsewhere in the genome. These three forms of ROP18 are likely adaptations for different niches in nature, and they confer markedly different virulence to mice. The widespread distribution of a single mouse-virulent allele among geographically and genetically disparate parasites may have consequences for transmission and disease in other hosts, including humans
    corecore