5,298 research outputs found

    Hard-scattering factorization with heavy quarks: A general treatment

    Get PDF
    A detailed proof of hard scattering factorization is given with the inclusion of heavy quark masses. Although the proof is explicitly given for deep-inelastic scattering, the methods apply more generally The power-suppressed corrections to the factorization formula are uniformly suppressed by a power of \Lambda/Q, independently of the size of heavy quark masses, M, relative to Q.Comment: 52 pages. Version as published plus correction of misprint in Eq. (45

    Transcriptome-pathology correlation identifies interplay between TDP-43 and the expression of its kinase CK1E in sporadic ALS.

    Get PDF
    Sporadic amyotrophic lateral sclerosis (sALS) is the most common form of ALS, however, the molecular mechanisms underlying cellular damage and motor neuron degeneration remain elusive. To identify molecular signatures of sALS we performed genome-wide expression profiling in laser capture microdissection-enriched surviving motor neurons (MNs) from lumbar spinal cords of sALS patients with rostral onset and caudal progression. After correcting for immunological background, we discover a highly specific gene expression signature for sALS that is associated with phosphorylated TDP-43 (pTDP-43) pathology. Transcriptome-pathology correlation identified casein kinase 1ε (CSNK1E) mRNA as tightly correlated to levels of pTDP-43 in sALS patients. Enhanced crosslinking and immunoprecipitation in human sALS patient- and healthy control-derived frontal cortex, revealed that TDP-43 binds directly to and regulates the expression of CSNK1E mRNA. Additionally, we were able to show that pTDP-43 itself binds RNA. CK1E, the protein product of CSNK1E, in turn interacts with TDP-43 and promotes cytoplasmic accumulation of pTDP-43 in human stem-cell-derived MNs. Pathological TDP-43 phosphorylation is therefore, reciprocally regulated by CK1E activity and TDP-43 RNA binding. Our framework of transcriptome-pathology correlations identifies candidate genes with relevance to novel mechanisms of neurodegeneration

    Evolution of associative learning in chemical networks

    Get PDF
    Organisms that can learn about their environment and modify their behaviour appropriately during their lifetime are more likely to survive and reproduce than organisms that do not. While associative learning – the ability to detect correlated features of the environment – has been studied extensively in nervous systems, where the underlying mechanisms are reasonably well understood, mechanisms within single cells that could allow associative learning have received little attention. Here, using in silico evolution of chemical networks, we show that there exists a diversity of remarkably simple and plausible chemical solutions to the associative learning problem, the simplest of which uses only one core chemical reaction. We then asked to what extent a linear combination of chemical concentrations in the network could approximate the ideal Bayesian posterior of an environment given the stimulus history so far? This Bayesian analysis revealed the ’memory traces’ of the chemical network. The implication of this paper is that there is little reason to believe that a lack of suitable phenotypic variation would prevent associative learning from evolving in cell signalling, metabolic, gene regulatory, or a mixture of these networks in cells

    Branching of the Falkner-Skan solutions for λ < 0

    Get PDF
    The Falkner-Skan equation f'" + ff" + λ(1 - f'^2) = 0, f(0) = f'(0) = 0, is discussed for λ < 0. Two types of problems, one with f'(∞) = 1 and another with f'(∞) = -1, are considered. For λ = 0- a close relation between these two types is found. For λ < -1 both types of problem allow multiple solutions which may be distinguished by an integer N denoting the number of zeros of f' - 1. The numerical results indicate that the solution branches with f'(∞) = 1 and those with f'(∞) = -1 tend towards a common limit curve as N increases indefinitely. Finally a periodic solution, existing for λ < -1, is presented.

    Micro-Hall Magnetometry Studies of Thermally Assisted and Pure Quantum Tunneling in Single Molecule Magnet Mn12-Acetate

    Full text link
    We have studied the crossover between thermally assisted and pure quantum tunneling in single crystals of high spin (S=10) uniaxial single molecule magnet Mn12-acetate using micro-Hall effect magnetometry. Magnetic hysteresis experiments have been used toinvestigate the energy levels that determine the magnetization reversal as a function of magnetic field and temperature. These experiments demonstrate that the crossover occurs in a narrow (~0.1 K) or broad (~1 K) temperature interval depending on the magnitude and direction of the applied field. For low external fields applied parallel to the easy axis, the energy levels that dominate the tunneling shift abruptly with temperature. In the presence of a transverse field and/or large longitudinal field these energy levels change with temperature more gradually. A comparison of our experimental results with model calculations of this crossover suggest that there are additional mechanisms that enhance the tunneling rate of low lying energy levels and broaden the crossover for small transverse fields.Comment: 5 pages, 5 figure

    Orthopedic surgery increases atherosclerotic lesions and necrotic core area in ApoE-/- mice

    Get PDF
    Background and aims Observational studies show a peak incidence of cardiovascular events after major surgery. For example, the risk of myocardial infarction increases 25-fold early after hip replacement. The acuteness of this increased risk suggests abrupt enhancement in plaque vulnerability, which may be related to intra-plaque inflammation, thinner fibrous cap and/or necrotic core expansion. We hypothesized that acute systemic inflammation following major orthopedic surgery induces such changes. Methods ApoE−/− mice were fed a western diet for 10 weeks. Thereafter, half the mice underwent mid-shaft femur osteotomy followed by realignment with an intramedullary K-wire, to mimic major orthopedic surgery. Mice were sacrificed 5 or 15 days post-surgery (n = 22) or post-saline injection (n = 13). Serum amyloid A (SAA) was measured as a marker of systemic inflammation. Paraffin embedded slides of the aortic root were stained to measure total plaque area and to quantify fibrosis, calcification, necrotic core, and inflammatory cells. Results Surgery mice showed a pronounced elevation of serum amyloid A (SAA) and developed increased plaque and necrotic core area already at 5 days, which reached significance at 15 days (p = 0.019; p = 0.004 for plaque and necrotic core, respectively). Macrophage and lymphocyte density significantly decreased in the surgery group compared to the control group at 15 days (p = 0.037; p = 0.024, respectively). The density of neutrophils and mast cells remained unchanged. Conclusions Major orthopedic surgery in ApoE−/− mice triggers a systemic inflammatory response. Atherosclerotic plaque area is enlarged after surgery mainly due to an increase of the necrotic core. The role of intra-plaque inflammation in this response to surgical injury remains to be fully elucidated. © 2016 Elsevier Ireland Lt
    • …
    corecore