591 research outputs found

    An experimental study on the application of polyalcohol solid-solid phase change materials in solar drying with cross-corrugated solar air collectors

    Get PDF
    In this paper, two identical solar driers with the same cross-corrugated solar air collectors and drying chamber were developed, one with phase-change materials (PCMs) and the other without PCMs. These two solar drying systems were tested in typical sunny and cloudy days in Kunming and their thermal performances were analyzed. The experimental results show that the temperature changing is smoother in the collector with the PCMs, which is beneficial for the drying as the useful drying time was prolonged. The same trend was also found in the chamber with the PCMs. The PCMs in solar drying system was found to play a role in temperature regulating. There were several cycles of heat charging-discharging in a cloudy testing day while the temperatures on collectors and in chambers with the polyalcohol PCMs is higher than each phase-change temperature. Nevertheless, there was only one cycle of heat charging-discharging in a sunny testing day. The collector with PCMs has higher daily useful heat gain than the collector without PCMs

    Infer user interests via link structure regularization

    Get PDF
    Learning user interests from online social networks helps to better understand user behaviors and provides useful guidance to design user-centric applications. Apart from analyzing users' online content, it is also important to consider users' social connections in the social Web. Graph regularization methods have been widely used in various text mining tasks, which can leverage the graph structure information extracted from data. Previously, graph regularization methods operate under the cluster assumption that nearby nodes are more similar and nodes on the same structure (typically referred to as a cluster or a manifold) are likely to be similar. We argue that learning user interests from complex, sparse, and dynamic social networks should be based on the link structure assumption under which node similarities are evaluated based on the local link structures instead of explicit links between two nodes. We propose a regularization framework based on the relation bipartite graph, which can be constructed from any type of relations. Using Twitter as our case study, we evaluate our proposed framework from social networks built from retweet relations. Both quantitative and qualitative experiments show that our proposed method outperforms a few competitive baselines in learning user interests over a set of predefined topics. It also gives superior results compared to the baselines on retweet prediction and topical authority identification

    Q2Q^2--Dependence of the Gerasimov-Drell-Hearn Sum Rule

    Full text link
    We test the Gerasimov-Drell-Hearn (GDH) sum rule numerically by calculating the total photon absorption cross sections σ1/2\sigma_{1/2} and σ3/2\sigma_{3/2} on the nucleon via photon excitation of baryon resonances in the constituent quark model. A total of seventeen, low-lying, non-strange baryon resonances are included in this calculation. The transverse and longitudinal interference cross section, σ1/2TL\sigma_{1/2}^{TL}, is found to play an important role in the study of the Q2Q^2 variation of the sum rule. The results show that the GDH sum rule is saturated by these resonances at a confidence level of 94%. In particular, the P33(1232)P_{33}(1232) excitation largely saturates the sum rule at Q2=0Q^2 = 0, and dominates at small Q2Q^2. The GDH integral has a strong Q2Q^2-dependence below Q2=1.0GeV2Q^2= 1.0 {GeV}^2 and changes its sign around Q2=0.3GeV2Q^2= 0.3 {GeV}^2. It becomes weakly Q2Q^2-dependent for Q2>1.0GeV2Q^2 > 1.0 {GeV}^2 because of the quick decline of the resonance contributions. We point out that the Q2Q^2 variation of the GDH sum rule is very important for understanding the nucleon spin structure in the non-perturbative QCD region.Comment: revtex, 17 pages, 3 ps figs include

    Insights into the function of silver as an oxidation catalyst by ab initio, atomistic thermodynamics

    Get PDF
    To help understand the high activity of silver as an oxidation catalyst, e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of methanol to formaldehyde, the interaction and stability of oxygen species at the Ag(111) surface has been studied for a wide range of coverages. Through calculation of the free energy, as obtained from density-functional theory and taking into account the temperature and pressure via the oxygen chemical potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a thin surface-oxide structure is most stable for the temperature and pressure range of ethylene epoxidation and we propose it (and possibly other similar structures) contains the species actuating the catalysis. For higher temperatures, low coverages of chemisorbed oxygen are most stable, which could also play a role in oxidation reactions. For temperatures greater than about 775 K there are no stable oxygen species, except for the possibility of O atoms adsorbed at under-coordinated surface sites Our calculations rule out thicker oxide-like structures, as well as bulk dissolved oxygen and molecular ozone-like species, as playing a role in the oxidation reactions.Comment: 15 pages including 9 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    New rosette tools for developing rotational vibration-assisted incremental sheet forming

    Get PDF
    A major limitation of the incremental sheet forming (ISF) is its difficulties to manufacture hard-to-form materials. The existing ISF process variants require additional systems or devices, which compromises the process flexibility and simplicity, the unique advantages of the ISF. In this study, a novel type of rosette tools is proposed for developing a new ISF process to improve material formability, named as Rotational Vibration-assisted ISF (RV-ISF). A hard-to-form material, magnesium alloy AZ31B, has been successfully formed in the RV-ISF experiment by creating low-frequency and low-amplitude vibrations, and elevated temperatures at the local forming zone in the range of 250–450 °C. By developing the new RV-ISF, it has achieved a 60% increase in fracture depth than that by friction-stir ISF and more than 46% reduction in forming force than that by the conventional ISF. Experimental evaluation and analytical prediction of temperature increase, forming force and flow-stress reduction have concluded that the combined thermal effect and vibration softening is the key mechanism leading to the significant formability enhancement. The results show that both the rosette tool design and tool rotational speed are critical factors determining heat generation and transfer as well as vibration frequency and amplitude. Investigation on microstructural evolution has revealed that the low-frequency and low-amplitude vibrations created by the rosette tool have activated dislocations and dynamic recrystallization, and produced refined grains and increased micro hardness. The new RV-ISF developed has potentials to manufacture other hard-to-form materials and complex geometries of sheet products, overcoming the formability limitation of the current ISF technology

    Performance investigation of hybrid excited switched flux permanent magnet machines using frozen permeability method

    Get PDF
    This study investigates the electromagnetic performance of a hybrid excited switched flux permanent magnet (SFPM) machine using the frozen permeability (FP) method. The flux components due to PMs, field excitation windings and armature windings have been separated using the FP method. It has been used to separate the torque components due to the PMs and excitations, providing a powerful insight into the torque generation mechanism of hybrid excited SFPM machines. It also allows the accurate calculation of d- and q-axis inductances, which will then be used to calculate the torque, power and power factor against rotor speed to compare the relative merits of hybrid excited SFPM machines with different types of PMs (i.e. NdFeB, SmCo and Ferrite). This offers the possibility of choosing appropriate PMs for different applications (maximum torque or maximum speed). Although only one type of hybrid excited PM machine has been employed to carry out the investigations, the method used in this study can also be extended to other hybrid excited PM machines. The predicted results have been validated by tests

    Photo-production of Nucleon Resonances and Nucleon Spin Structure Function in the Resonance Region

    Get PDF
    The photo-production of nucleon resonances is calculated based on a chiral constituent quark model including both relativistic corrections H{rel} and two-body exchange currents, and it is shown that these effects play an important role. We also calculate the first moment of the nucleon spin structure function g1 (x,Q^2) in the resonance region, and obtain a sign-changing point around Q^2 ~ 0.27 {GeV}^2 for the proton.Comment: 23 pages, 5 figure

    A refined invariant subspace method and applications to evolution equations

    Full text link
    The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations was analyzed to shed light on the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differential equations and their corresponding exact solutions with generalized separated variables.Comment: 16 page
    • 

    corecore