156 research outputs found

    The influence of the unit commitment plan on the variance of electric power production cost

    Get PDF
    In electricity production systems, generating unit failures will result in higher electricity production cost. For a system operator, the variance of production cost is an important factor for choosing the proper commitment plan, because generating unit failures require a much more expensive unit to replace their electricity production task. Unit Commitment (UC) seeks a thermal generator commitment schedule that meets the net electricity demand in the most cost-effective way while satisfying operational constraints on both transmission and generation systems. The unexpected, extremely high operational cost is undesirable for system operators. The production cost variance could be helpful when decision makers try to select a commitment plan with low risk in its operational cost. In this project, we focus on the behavior of production cost variance for different commitment plans under a simplified model of an electric production system. In the simplified system, the warm up and shut down periods of generating units are ignored. First, a simulation model and an approximation method are built to estimate the production cost variance of this simplified system. Then, the influence of the commitment plan is observed based on simulation results. After that, the performance of both estimation approaches is tested using commitment plan data. The contribution of this project is that we incorporate the influence of the commitment plan into the production cost variance calculation and propose a potential approach for commitment plan evaluation. In the proposed approach, the decision makers could use the approximation method to select some good commitment plans from a large set of commitment plans and use the simulation method to select the best commitment plan from those good commitment plans

    RANK: Large-Scale Inference with Graphical Nonlinear Knockoffs

    Full text link
    Power and reproducibility are key to enabling refined scientific discoveries in contemporary big data applications with general high-dimensional nonlinear models. In this paper, we provide theoretical foundations on the power and robustness for the model-free knockoffs procedure introduced recently in Cand\`{e}s, Fan, Janson and Lv (2016) in high-dimensional setting when the covariate distribution is characterized by Gaussian graphical model. We establish that under mild regularity conditions, the power of the oracle knockoffs procedure with known covariate distribution in high-dimensional linear models is asymptotically one as sample size goes to infinity. When moving away from the ideal case, we suggest the modified model-free knockoffs method called graphical nonlinear knockoffs (RANK) to accommodate the unknown covariate distribution. We provide theoretical justifications on the robustness of our modified procedure by showing that the false discovery rate (FDR) is asymptotically controlled at the target level and the power is asymptotically one with the estimated covariate distribution. To the best of our knowledge, this is the first formal theoretical result on the power for the knockoffs procedure. Simulation results demonstrate that compared to existing approaches, our method performs competitively in both FDR control and power. A real data set is analyzed to further assess the performance of the suggested knockoffs procedure.Comment: 37 pages, 6 tables, 9 pages supplementary materia

    Interaction pursuit in high-dimensional multi-response regression via distance correlation

    Full text link
    Feature interactions can contribute to a large proportion of variation in many prediction models. In the era of big data, the coexistence of high dimensionality in both responses and covariates poses unprecedented challenges in identifying important interactions. In this paper, we suggest a two-stage interaction identification method, called the interaction pursuit via distance correlation (IPDC), in the setting of high-dimensional multi-response interaction models that exploits feature screening applied to transformed variables with distance correlation followed by feature selection. Such a procedure is computationally efficient, generally applicable beyond the heredity assumption, and effective even when the number of responses diverges with the sample size. Under mild regularity conditions, we show that this method enjoys nice theoretical properties including the sure screening property, support union recovery, and oracle inequalities in prediction and estimation for both interactions and main effects. The advantages of our method are supported by several simulation studies and real data analysis.Comment: to appear in The Annals of Statistics (2016

    Description of Shale Pore Fracture Structure Based on Multi-fractal Theory

    Get PDF
    In order to describe the shale-fissure's structure and distribution accurately, this paper combines with complex features of shale rock mass' multilevel micro-scale fissure network, putting forward that utilizing the multi-fractal method to describe the distribution of fissures with different dimensions. By choosing some oil field's block shale samples, obtain the fissure distribution characteristics by CT scanning and calculate with the multi-fractal theory, the results show that the shale rock mass' fissure distribute in a multiple-fractal regularity. The study results lay a solid foundation of subsequent press shale fissure network's formation and description

    Effect of 26 Years of Intensively Managed Carya cathayensis

    Get PDF
    Chinese hickory (Carya cathayensis), a popular nut food tree species, is mainly distributed in southeastern China. A field study was carried out to investigate the effect of long-term intensive management on fertility of soils under a C. cathayensis forest. Results showed that after 26 years’ intensive management, the soil organic carbon (SOC) content of the A and B horizons reduced by 19% and 14%, respectively. The reduced components of SOC are mainly the alkyl C and O-alkyl C, whereas the aromatic C and carbonyl C remain unchanged. The reduction of active organic matter could result in degradation of soil fertility. The pH value of soil in the A horizon had dropped by 0.7 units on average. The concentrations of the major nutrients also showed a decreasing trend. On average the concentrations of total nitrogen (N), phosphorus (P), and potassium (K) of tested soils dropped by 21.8%, 7.6%, and 13.6%, respectively, in the A horizon. To sustain the soil fertility and C. cathayensis production, it is recommended that more organic fertilizers (manures) should be used together with chemical fertilizers. Lime should also be applied to reduce soil acidity

    The Greenland Telescope: Construction, Commissioning, and Operations in Pituffik

    Full text link
    In 2018, the Greenland Telescope (GLT) started scientific observation in Greenland. Since then, we have completed several significant improvements and added new capabilities to the telescope system. This paper presents a full review of the GLT system, a summary of our observation activities since 2018, the lessons learned from the operations in the Arctic regions, and the prospect of the telescope.Comment: 26 pages, 11 figures, and 8 tables. This is the version of the article before publication editing, as submitted by an author to Publications of the Astronomical Society of the Pacific. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record will be added when it becomes availabl

    A ring-like accretion structure in M87 connecting its black hole and jet

    Get PDF
    The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation^{1,2}. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole^3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of 8.4_{-1.1}^{+0.5} Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.Comment: 50 pages, 18 figures, 3 tables, author's version of the paper published in Natur

    A ring-like accretion structure in M87 connecting its black hole and jet

    Get PDF
    The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition\ua0to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow

    Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law R[superscript Δ] with index Δ=-0.333±0.014(fit)±0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts Δ=-1/3 asymptotically.National Science Foundation (U.S.) (Grants 1455202 and 1551980)Wyle Research (Firm) (Grant 2014/T72497)United States. National Aeronautics and Space Administration (NASA Earth and Space Science Fellowship Grant HELIO15F-0005

    Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station

    Get PDF
    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at &sim;30GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.</p
    • …
    corecore