242 research outputs found
How weeds emerge: a taxonomic and trait‐based examination using United States data
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106812/1/nph12698.pd
Top Quarks as a Window to String Resonances
We study the discovery potential of string resonances decaying to
final state at the LHC. We point out that top quark pair production is a
promising and an advantageous channel for studying such resonances, due to
their low Standard Model background and unique kinematics. We study the
invariant mass distribution and angular dependence of the top pair production
cross section via exchanges of string resonances. The mass ratios of these
resonances and the unusual angular distribution may help identify their
fundamental properties and distinguish them from other new physics. We find
that string resonances for a string scale below 4 TeV can be detected via the
channel, either from reconstructing the semi-leptonic
decay or recent techniques in identifying highly boosted tops.Comment: 22 pages, 6 figure
Heavy Squarks at the LHC
The LHC, with its seven-fold increase in energy over the Tevatron, is capable
of probing regions of SUSY parameter space exhibiting qualitatively new
collider phenomenology. Here we investigate one such region in which first
generation squarks are very heavy compared to the other superpartners. We find
that the production of these squarks, which is dominantly associative, only
becomes rate-limited at mSquark > 4(5) TeV for L~10(100) fb-1. However,
discovery of this scenario is complicated because heavy squarks decay primarily
into a jet and boosted gluino, yielding a dijet-like topology with missing
energy (MET) pointing along the direction of the second hardest jet. The result
is that many signal events are removed by standard jet/MET anti-alignment cuts
designed to guard against jet mismeasurement errors. We suggest replacing these
anti-alignment cuts with a measurement of jet substructure that can
significantly extend the reach of this channel while still removing much of the
background. We study a selection of benchmark points in detail, demonstrating
that mSquark= 4(5) TeV first generation squarks can be discovered at the LHC
with L~10(100)fb-1
Phenomenology of event shapes at hadron colliders
We present results for matched distributions of a range of dijet event shapes
at hadron colliders, combining next-to-leading logarithmic (NLL) accuracy in
the resummation exponent, next-to-next-to leading logarithmic (NNLL) accuracy
in its expansion and next-to-leading order (NLO) accuracy in a pure alpha_s
expansion. This is the first time that such a matching has been carried out for
hadronic final-state observables at hadron colliders. We compare our results to
Monte Carlo predictions, with and without matching to multi-parton tree-level
fixed-order calculations. These studies suggest that hadron-collider event
shapes have significant scope for constraining both perturbative and
non-perturbative aspects of hadron-collider QCD. The differences between
various calculational methods also highlight the limits of relying on
simultaneous variations of renormalisation and factorisation scale in making
reliable estimates of uncertainties in QCD predictions. We also discuss the
sensitivity of event shapes to the topology of multi-jet events, which are
expected to appear in many New Physics scenarios.Comment: 70 pages, 25 figures, additional material available from
http://www.lpthe.jussieu.fr/~salam/pp-event-shapes
Heavy colored resonances in top-antitop + jet at the LHC
The LHC is the perfect environment for the study of new physics in the top
quark sector. We study the possibility of detecting signals of heavy
color-octet vector resonances, through the charge asymmetry, in top-antitop+jet
events. Besides contributions with the top-antitop pair in a color-singlet
state, the asymmetry gets also contributions which are proportional to the
color factor f_{abc}^2. This process is particularly interesting for
extra-dimensional models, where the inclusive charge asymmetry generated by
Kaluza-Klein excitations of the gluon vanishes at the tree level. We find that
the statistical significance for the measurement of such an asymmetry is
sizable for different values of the coupling constants and already at low
energies
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Characterization of Voltage-Gated Ca2+ Conductances in Layer 5 Neocortical Pyramidal Neurons from Rats
Neuronal voltage-gated Ca2+ channels are involved in electrical signalling and in converting these signals into cytoplasmic calcium changes. One important function of voltage-gated Ca2+ channels is generating regenerative dendritic Ca2+ spikes. However, the Ca2+ dependent mechanisms used to create these spikes are only partially understood. To start investigating this mechanism, we set out to kinetically and pharmacologically identify the sub-types of somatic voltage-gated Ca2+ channels in pyramidal neurons from layer 5 of rat somatosensory cortex, using the nucleated configuration of the patch-clamp technique. The activation kinetics of the total Ba2+ current revealed conductance activation only at medium and high voltages suggesting that T-type calcium channels were not present in the patches. Steady-state inactivation protocols in combination with pharmacology revealed the expression of R-type channels. Furthermore, pharmacological experiments identified 5 voltage-gated Ca2+ channel sub-types – L-, N-, R- and P/Q-type. Finally, the activation of the Ca2+ conductances was examined using physiologically derived voltage-clamp protocols including a calcium spike protocol and a mock back-propagating action potential (mBPAP) protocol. These experiments enable us to suggest the possible contribution of the five Ca2+ channel sub-types to Ca2+ current flow during activation under physiological conditions
Multiple M. tuberculosis Phenotypes in Mouse and Guinea Pig Lung Tissue Revealed by a Dual-Staining Approach
A unique hallmark of tuberculosis is the granulomatous lesions formed in the lung. Granulomas can be heterogeneous in nature and can develop a necrotic, hypoxic core which is surrounded by an acellular, fibrotic rim. Studying bacilli in this in vivo microenvironment is problematic as Mycobacterium tuberculosis can change its phenotype and also become acid-fast negative. Under in vitro models of differing environments, M. tuberculosis alters its metabolism, transcriptional profile and rate of replication. In this study, we investigated whether these phenotypic adaptations of M. tuberculosis are unique for certain environmental conditions and if they could therefore be used as differential markers. Bacilli were studied using fluorescent acid-fast auramine-rhodamine targeting the mycolic acid containing cell wall, and immunofluorescence targeting bacterial proteins using an anti-M. tuberculosis whole cell lysate polyclonal antibody. These techniques were combined and simultaneously applied to M. tuberculosis in vitro culture samples and to lung sections of M. tuberculosis infected mice and guinea pigs. Two phenotypically different subpopulations of M. tuberculosis were found in stationary culture whilst three subpopulations were found in hypoxic culture and in lung sections. Bacilli were either exclusively acid-fast positive, exclusively immunofluorescent positive or acid-fast and immunofluorescent positive. These results suggest that M. tuberculosis exists as multiple populations in most conditions, even within seemingly a single microenvironment. This is relevant information for approaches that study bacillary characteristics in pooled samples (using lipidomics and proteomics) as well as in M. tuberculosis drug development
Radiotherapy Suppresses Angiogenesis in Mice through TGF-βRI/ALK5-Dependent Inhibition of Endothelial Cell Sprouting
BACKGROUND: Radiotherapy is widely used to treat cancer. While rapidly dividing cancer cells are naturally considered the main target of radiotherapy, emerging evidence indicates that radiotherapy also affects endothelial cell functions, and possibly also their angiogenic capacity. In spite of its clinical relevance, such putative anti-angiogenic effect of radiotherapy has not been thoroughly characterized. We have investigated the effect of ionizing radiation on angiogenesis using in vivo, ex vivo and in vitro experimental models in combination with genetic and pharmacological interventions.
PRINCIPAL FINDINGS: Here we show that high doses ionizing radiation locally suppressed VEGF- and FGF-2-induced Matrigel plug angiogenesis in mice in vivo and prevented endothelial cell sprouting from mouse aortic rings following in vivo or ex vivo irradiation. Quiescent human endothelial cells exposed to ionizing radiation in vitro resisted apoptosis, demonstrated reduced sprouting, migration and proliferation capacities, showed enhanced adhesion to matrix proteins, and underwent premature senescence. Irradiation induced the expression of P53 and P21 proteins in endothelial cells, but p53 or p21 deficiency and P21 silencing did not prevent radiation-induced inhibition of sprouting or proliferation. Radiation induced Smad-2 phosphorylation in skin in vivo and in endothelial cells in vitro. Inhibition of the TGF-beta type I receptor ALK5 rescued deficient endothelial cell sprouting and migration but not proliferation in vitro and restored defective Matrigel plug angiogenesis in irradiated mice in vivo. ALK5 inhibition, however, did not rescue deficient proliferation. Notch signaling, known to hinder angiogenesis, was activated by radiation but its inhibition, alone or in combination with ALK5 inhibition, did not rescue suppressed proliferation.
CONCLUSIONS: These results demonstrate that irradiation of quiescent endothelial cells suppresses subsequent angiogenesis and that ALK5 is a critical mediator of this suppression. These results extend our understanding of radiotherapy-induced endothelial dysfunctions, relevant to both therapeutic and unwanted effects of radiotherapy
- …