529 research outputs found

    Amyloid associated with elastin-staining laminar aggregates in the lungs of patients diagnosed with acute respiratory distress syndrome

    Get PDF
    BACKGROUND: The heterogeneity of conditions underlying respiratory distress, whether classified clinically as acute lung injury (ALI) or the more severe acute respiratory distress syndrome (ARDS), has hampered efforts to identify and more successfully treat these patients. Examination of postmortem lungs among cases clinically diagnosed as ARDS identified a cohort that showed a consistent morphology at the light and electron microscope levels, and featured pathognomonic structures which we termed elastin-staining laminar structures (ELS). METHODS: Postmortem tissues were stained using the Verhoeff-Van Gieson procedure for elastic fibers, and with Congo red for examination under a polarizing microscope. Similar samples were examined by transmission EM. RESULTS: The pathognomonic ELS presented as ordered molecular aggregates when stained using the Verhoeff-van Gieson technique for elastic fibers. In several postmortem lungs, the ELS also displayed apple-green birefringence after staining with Congo red, suggesting the presence of amyloid. Remarkably, most of the postmortem lungs with ELS exhibited no significant acute inflammatory cellular response such as neutrophilic reaction, and little evidence of widespread edema except for focal intra-alveolar hemorrhage. CONCLUSIONS: Postmortem lungs that exhibit the ELS constitute a morphologically-identifiable subgroup of ARDS cases. The ordered nature of the ELS, as indicated by both elastin and amyloid stains, together with little morphological evidence of inflammation or edema, suggests that this cohort of ARDS may represent another form of conformational disease. If this hypothesis is confirmed, it will require a new approach in the diagnosis and treatment of patients who exhibit this form of acute lung injury

    Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data

    Get PDF
    High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude

    Genetic Admixture and Population Substructure in Guanacaste Costa Rica

    Get PDF
    The population of Costa Rica (CR) represents an admixture of major continental populations. An investigation of the CR population structure would provide an important foundation for mapping genetic variants underlying common diseases and traits. We conducted an analysis of 1,301 women from the Guanacaste region of CR using 27,904 single nucleotide polymorphisms (SNPs) genotyped on a custom Illumina InfiniumII iSelect chip. The program STRUCTURE was used to compare the CR Guanacaste sample with four continental reference samples, including HapMap Europeans (CEU), East Asians (JPT+CHB), West African Yoruba (YRI), as well as Native Americans (NA) from the Illumina iControl database. Our results show that the CR Guanacaste sample comprises a three-way admixture estimated to be 43% European, 38% Native American and 15% West African. An estimated 4% residual Asian ancestry may be within the error range. Results from principal components analysis reveal a correlation between genetic and geographic distance. The magnitude of linkage disequilibrium (LD) measured by the number of tagging SNPs required to cover the same region in the genome in the CR Guanacaste sample appeared to be weaker than that observed in CEU, JPT+CHB and NA reference samples but stronger than that of the HapMap YRI sample. Based on the clustering pattern observed in both STRUCTURE and principal components analysis, two subpopulations were identified that differ by approximately 20% in LD block size averaged over all LD blocks identified by Haploview. We also show in a simulated association study conducted within the two subpopulations, that the failure to account for population stratification (PS) could lead to a noticeable inflation in the false positive rate. However, we further demonstrate that existing PS adjustment approaches can reduce the inflation to an acceptable level for gene discovery

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    The skull of Epidolops ameghinoi from the early Eocene Itaboraí fauna, southeastern Brazil, and the affinities of the extinct marsupialiform order Polydolopimorphia

    Get PDF
    The skull of the polydolopimorphian marsupialiform Epidolops ameghinoi is described in detail for the first time, based on a single well-preserved cranium and associated left and right dentaries plus additional craniodental fragments, all from the early Eocene (53-50 million year old) Itaboraí fauna in southeastern Brazil. Notable craniodental features of E. ameghinoi include absence of a masseteric process, very small maxillopalatine fenestrae, a prominent pterygoid fossa enclosed laterally by a prominent ectopterygoid crest, an absent or tiny transverse canal foramen, a simple, planar glenoid fossa, and a postglenoid foramen that is immediately posterior to the postglenoid process. Most strikingly, the floor of the hypotympanic sinus was apparently unossified, a feature found in several stem marsupials but absent in all known crown marsupials. "Type II" marsupialiform petrosals previously described from Itaboraí plausibly belong to E. ameghinoi; in published phylogenetic analyses, these petrosals fell outside (crown-clade) Marsupialia. "IMG VII" tarsals previously referred to E. ameghinoi do not share obvious synapomorphies with any crown marsupial clade, nor do they resemble those of the only other putative polydolopimorphians represented by tarsal remains, namely the argyrolagids. Most studies have placed Polydolopimorphia within Marsupialia, related to either Paucituberculata, or to Microbiotheria and Diprotodontia. However, diprotodonty almost certainly evolved independently in polydolopimorphians, paucituberculatans and diprotodontians, and Epidolops does not share obvious synapomorphies with any marsupial order. Epidolops is dentally specialized, but several morphological features appear to be more plesiomorphic than any crown marsupial. It seems likely Epidolops that falls outside Marsupialia, as do morphologically similar forms such as Bonapartherium and polydolopids. Argyrolagids differ markedly in their known morphology from Epidolops but share some potential apomorphies with paucituberculatans. It is proposed that Polydolopimorphia as currently recognised is polyphyletic, and that argyrolagids (and possibly other taxa currently included in Argyrolagoidea, such as groeberiids and patagoniids) are members of Paucituberculata. This hypothesis is supported by Bayesian non-clock phylogenetic analyses of a total evidence matrix comprising DNA sequence data from five nuclear protein-coding genes, indels, retroposon insertions and morphological characters: Epidolops falls outside Marsupialia, whereas argyrolagids form a clade with the paucituberculatans Caenolestes and Palaeothentes, regardless of whether the Type II petrosals and IMG VII tarsals are used to score characters for Epidolops or not. There is no clear evidence for the presence of crown marsupials at Itaboraí, and it is possible that the origin and early evolution of Marsupialia was restricted to the "Austral Kingdom" (southern South America, Antarctica, and Australia)

    Amerind Ancestry, Socioeconomic Status and the Genetics of Type 2 Diabetes in a Colombian Population

    Get PDF
    The “thrifty genotype” hypothesis proposes that the high prevalence of type 2 diabetes (T2D) in Native Americans and admixed Latin Americans has a genetic basis and reflects an evolutionary adaptation to a past low calorie/high exercise lifestyle. However, identification of the gene variants underpinning this hypothesis remains elusive. Here we assessed the role of Native American ancestry, socioeconomic status (SES) and 21 candidate gene loci in susceptibility to T2D in a sample of 876 T2D cases and 399 controls from Antioquia (Colombia). Although mean Native American ancestry is significantly higher in T2D cases than in controls (32% v 29%), this difference is confounded by the correlation of ancestry with SES, which is a stronger predictor of disease status. Nominally significant association (P<0.05) was observed for markers in: TCF7L2, RBMS1, CDKAL1, ZNF239, KCNQ1 and TCF1 and a significant bias (P<0.05) towards OR>1 was observed for markers selected from previous T2D genome-wide association studies, consistent with a role for Old World variants in susceptibility to T2D in Latin Americans. No association was found to the only known Native American-specific gene variant previously associated with T2D in a Mexican sample (rs9282541 in ABCA1). An admixture mapping scan with 1,536 ancestry informative markers (AIMs) did not identify genome regions with significant deviation of ancestry in Antioquia. Exclusion analysis indicates that this scan rules out ∼95% of the genome as harboring loci with ancestry risk ratios >1.22 (at P < 0.05)

    An evaluation of POSSUM and P-POSSUM scoring in predicting post-operative mortality in a level 1 critical care setting

    Get PDF
    Background POSSUM and P-POSSUM are used in the assessment of outcomes in surgical patients. Neither scoring systems’ accuracy has been established where a level 1 critical care facility (level 1 care ward) is available for perioperative care. We compared POSSUM and P-POSSUM predicted with observed mortality on a level 1 care ward. Methods A prospective, observational study was performed between May 2000 and June 2008. POSSUM and P-POSSUM scores were calculated for all postoperative patients who were admitted to the level 1 care ward. Data for post-operative mortality were obtained from hospital records for 2552 episodes of patient care. Observed vs expected mortality was compared using receiver operating characteristic (ROC) curves and the goodness of fit assessed using the Hosmer-Lemeshow equation. Results ROC curves show good discriminative ability between survivors and non-survivors for POSSUM and P-POSSUM. Physiological score had far higher discrimination than operative score. Both models showed poor calibration and poor goodness of fit (Hosmer-Lemeshow). Observed to expected (O:E) mortality ratio for POSSUM and P-POSSUM indicated significantly fewer than expected deaths in all deciles of risk. Conclusions Our data suggest a 30-60% reduction in O:E mortality. We suggest that the use of POSSUM models to predict mortality in patients admitted to level 1 care ward is inappropriate or that a recalibration of POSSUM is required to make it useful in a level 1 care ward setting

    Ancient DNA analysis suggests negligible impact of the Wari Empire expansion in Peru's Central Coast during the Middle Horizon

    Get PDF
    The analysis of ancient human DNA from South America allows the exploration of pre-Columbian population history through time and to directly test hypotheses about cultural and demographic evolution. The Middle Horizon (650-1100 AD) represents a major transitional period in the Central Andes, which is associated with the development and expansion of ancient Andean empires such as Wari and Tiwanaku. These empires facilitated a series of interregional interactions and socio-political changes, which likely played an important role in shaping the region's demographic and cultural profiles. We analyzed individuals from three successive pre-Columbian cultures present at the Huaca Pucllana archaeological site in Lima, Peru: Lima (Early Intermediate Period, 500-700 AD), Wari (Middle Horizon, 800-1000 AD) and Ychsma (Late Intermediate Period, 1000-1450 AD). We sequenced 34 complete mitochondrial genomes to investigate the potential genetic impact of the Wari Empire in the Central Coast of Peru. The results indicate that genetic diversity shifted only slightly through time, ruling out a complete population discontinuity or replacement driven by the Wari imperialist hegemony, at least in the region around present-day Lima. However, we caution that the very subtle genetic contribution of Wari imperialism at the particular Huaca Pucllana archaeological site might not be representative for the entire Wari territory in the Peruvian Central Coast.Guido Valverde, María Inés Barreto Romero, Isabel Flores Espinoza, Alan Cooper, Lars Fehren-Schmitz, Bastien Llamas, Wolfgang Haa
    corecore