1,593 research outputs found

    The Enlightened Brain: Novel Imaging Methods Focus on Epileptic Networks at Multiple Scales

    Get PDF
    Epilepsy research is rapidly adopting novel fluorescence optical imaging methods to tackle unresolved questions on the cellular and circuit mechanisms of seizure generation and evolution. State of the art two-photon microscopy and wide-field fluorescence imaging can record the activity in epileptic networks at multiple scales, from neuronal microcircuits to brain-wide networks. These approaches exploit transgenic and viral technologies to target genetically encoded calcium and voltage sensitive indicators to subclasses of neurons, and achieve genetic specificity, spatial resolution and scalability that can complement electrophysiological recordings from awake animal models of epilepsy. Two-photon microscopy is well suited to study single neuron dynamics during interictal and ictal events, and highlight the differences between the activity of excitatory and inhibitory neuronal classes in the focus and propagation zone. In contrast, wide-field fluorescence imaging provides mesoscopic recordings from the entire cortical surface, necessary to investigate seizure propagation pathways, and how the unfolding of epileptic events depends on the topology of brain-wide functional connectivity. Answering these questions will inform pre-clinical studies attempting to suppress seizures with gene therapy, optogenetic or chemogenetic strategies. Dissecting which network nodes outside the seizure onset zone are important for seizure generation, propagation and termination can be used to optimize current and future evaluation methods to identify an optimal surgical strategy

    Suite2p: beyond 10,000 neurons with standard two-photon microscopy

    Get PDF
    Two-photon microscopy of calcium-dependent sensors has enabled unprecedented recordings from vast populations of neurons. While the sensors and microscopes have matured over several generations of development, computational methods to process the resulting movies remain inefficient and can give results that are hard to interpret. Here we introduce Suite2p: a fast, accurate and complete pipeline that registers raw movies, detects active cells, extracts their calcium traces and infers their spike times. Suite2p runs on standard workstations, operates faster than real time, and recovers ~2 times more cells than the previous state-of-the-art method. Its low computational load allows routine detection of ~10,000 cells simultaneously with standard two-photon resonant-scanning microscopes. Recordings at this scale promise to reveal the fine structure of activity in large populations of neurons or large populations of subcellular structures such as synaptic boutons

    Series Solution and Minimal Surfaces in AdS

    Full text link
    According to the Alday-Maldacena program the strong coupling limit of Super Yang-Mills scattering amplitudes is given by minimal area surfaces in AdS spacetime with a boundary consisting of a momentum space polygon. The string equations in AdS systematically reduce to coupled Toda type equations whose Euclidean classical solutions are then of direct relevance. While in the simplest case of AdS_3 exact solutions were known from earlier studies of the sinh-Gordon equation, there exist at present no similar exact forms for the generalized Toda equations related to AdS_d with d>=4. In this paper we develop a series method for the solution to those equations and evaluate their contribution to the finite piece of the worldsheet area. For the known sinh-Gordon case the method is seen to give results in excellent agreement with the exact answer.Comment: 19 pages, no figures; references added, one note adde

    Wide Range of Functionalized Poly(N-alkyl acrylamide)-Based Amphiphilic Polymer Conetworks via Active Ester Precursors

    Get PDF
    A versatile strategy for the fabrication of functional and nanostructured poly(N-alkyl acrylamide)-based amphiphilic polymer conetworks (APCNs) from hydrophobic precursor networks is presented. The active ester monomer pentafluorophenyl acrylate (PFPA) fulfills a dual role: it provides miscibility with hydrophobic macromonomer cross-linkers and activates the acrylate for amidation reactions. Thereby, it acts as a general hydrophobic masking group for N-alkyl acrylamides, and enables the transformation of PFPA-based hydrophobic precursor networks into a multitude of different poly(N-alkyl acrylamide)-l-PDMS APCNs. These optically transparent APCNs possess nanophase-separated morphologies with domain sizes in the nanometer range. Variation of the amide results in different types of APCNs, despite them being derived from the same precursor network and having identical network structures. Accordingly, the properties of these APCNs can be tailored to the desired application by simple variation of the amide functionality. Furthermore, the combination of PFPA with another hydrophobically masked monomer allows for the fabrication of APCNs with small yet precisely defined amounts of functional amide units in the hydrophilic phase. A controlled functionalization of APCNs with pendant groups such as pH-responsive imidazole, fluorescent dyes, and biotin for specific protein binding is achieved, greatly expanding the functionality of the APCNs. Such functionalized APCNs could find application as stimuli-responsive drug delivery membranes, smart hydrogels, biosensors, or matrices for biocatalysis

    Effects of 2 or 5 consecutive exercise days on adipocyte area and lipid parameters in Wistar rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exercise has been prescribed in the treatment and control of dyslipidemias and cholesterolemia, however, lipid responses to different training frequencies in hypercholesterolemic men have been inconsistent. We sought to verify if different frequencies of continuous moderate exercise (2 or 5 days/week, swimming) can, after 8 weeks, promote adaptations in adipocyte area and lipid parameters, as well as body weight and relative weight of tissues in normo and hypercholesterolemic adult male rats.</p> <p>Methods</p> <p>Normal cholesterol chow diet or cholesterol-rich diet (1% cholesterol plus 0.25% cholic acid) were freely given during 8 weeks to the rats divided in 6 experimentals groups: sedentary normal cholesterol chow diet (C); sedentary cholesterol-rich diet (H); 5× per week continuous training normal cholesterol chow diet (TC5) and cholesterol-rich diet (TH5); 2× per week continuos traning normal cholesterol chow diet (TC2) and cholesterol-rich diet (TH2).</p> <p>Results</p> <p>No changes were observed in lipid profile in normal cholesterol chow diet, but both 2 a 5 days/week exercise improved this profile in cholesterol-rich diet. Body weight gain was lower in exercised rats. Decrease in retroperitoneal and epididymal relative weights as well as reductions in adipocyte areas under all diets types were observed only in 5 days/week, while 2 days/week showed improvements mainly in cholesterol-rich diet rats.</p> <p>Conclusion</p> <p>Our results confirm the importance of exercise protocols to control dyslipidemias and obesity in rats. The effects of 5 days/week exercise were more pronounced compared with those of 2 consecutive days/week training.</p

    Polyphenols as Morphogenetic Agents for the Controlled Synthesis of Mesoporous Silica Nanoparticles

    Get PDF
    Non-surfactant-induced synthesis of mesoporous silica nanoparticles (MSNPs) is gaining increasing interest because of their low toxicity and simple purification compared to conventional surfactant-based methods. Tannic acid (TA), considered as a glucose-derived polyphenol, was first employed a few years ago and has attracted great research interest. Despite recent progress, the mechanisms resulting in the porous structure remain to be elucidated. In this work, we have employed TA and four structurally related polyphenols (gallic acid, ethyl gallate, eudesmic acid, and quercetin) to elucidate the effect of the chemical structure and properties of polyphenols on their templating ability. Our results unravel the mechanism of MSNP formation templated by TA, which form a supramolecular framework as the skeleton for the silica species to attach. The structure of the supramolecular network results in irregular pores. Additionally, the pKa value of the templates may be accounted for the particle size. Small-angle X-ray scattering was used to provide precise information on the morphology, especially the porosity of the resulting MSNPs in addition to electron microscopy, dynamic light scattering, nitrogen adsorption and desorption Brunauer–Emmett–Teller method, and thermogravimetric analysis

    TBA-like equations and Casimir effect in (non-)perturbative AdS/CFT

    Full text link
    We consider high spin, ss, long twist, LL, planar operators (asymptotic Bethe Ansatz) of strong N=4{\cal N}=4 SYM. Precisely, we compute the minimal anomalous dimensions for large 't Hooft coupling λ\lambda to the lowest order of the (string) scaling variable L/(lnSλ)\ell \sim L/ (\ln \mathcal{S} \sqrt{\lambda}) with GKP string size lnS2ln(s/λ)\sim\ln \mathcal{S}\equiv 2 \ln (s/\sqrt{\lambda}). At the leading order (lnS)2(\ln \mathcal{S}) \cdot \ell ^2 , we can confirm the O(6) non-linear sigma model description for this bulk term, without boundary term (lnS)0(\ln \mathcal{S})^0. Going further, we derive, extending the O(6) regime, the exact effect of the size finiteness. In particular, we compute, at all loops, the first Casimir correction 0/lnS\ell ^0/\ln \mathcal{S} (in terms of the infinite size O(6) NLSM), which reveals only one massless mode (out of five), as predictable once the O(6) description has been extended. Consequently, upon comparing with string theory expansion, at one loop our findings agree for large twist, while reveal for negligible twist, already at this order, the appearance of wrapping. At two loops, as well as for next loops and orders, we can produce predictions, which may guide future string computations.Comment: Version 2 with: new exact expression for the Casimir energy derived (beyond the first two loops of the previous version); UV theory formulated and analysed extensively in the Appendix C; origin of the O(6) NLSM scattering clarified; typos correct and references adde

    The clinical features of the piriformis syndrome: a systematic review

    Get PDF
    Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis

    Computed tomography segmental calcium score (SCS) to predict stenosis severity of calcified coronary lesions

    Get PDF
    To estimate the probability of ≥50 % coronary stenoses based on computed tomography (CT) segmental calcium score (SCS) and clinical factors. The Institutional Review Board approved the study. A training sample of 201 patients underwent CT calcium scoring and conventional coronary angiography (CCA). All patients consented to undergo CT before CCA after being informed of the additional radiation dose. SCS and calcification morphology were assessed in individual coronary segments. We explored the predictive value of patient’s symptoms, clinical history, SCS and calcification morphology. We developed a prediction model in the training sample based on these variables then tested it in an independent test sample. The odds ratio (OR) for ≥50 % coronary stenosis was 1.8-fold greater (p = 0.006) in patients with typical chest pain, twofold (p = 0.014) greater in patients with acute coronary syndromes, twofold greater (p < 0.001) in patients with prior myocardial infarction. Spotty calcifications had an OR for ≥50 % stenosis 2.3-fold (p < 0.001) greater than the absence of calcifications, wide calcifications 2.7-fold (p < 0.001) greater, diffuse calcifications 4.6-fold (p < 0.001) greater. In middle segments, each unit of SCS had an OR 1.2-fold (p < 0.001) greater than in distal segments; in proximal segments the OR was 1.1-fold greater (p = 0.021). The ROC curve area of the prediction model was 0.795 (0.95 confidence interval 0.602–0.843). Validation in a test sample of 201 independent patients showed consistent diagnostic performance. In conjunction with calcification morphology, anatomical location, patient’s symptoms and clinical history, SCS can be helpful to estimate the probability of ≥50 % coronary stenosis
    corecore