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Epilepsy research is rapidly adopting novel fluorescence optical imaging methods to
tackle unresolved questions on the cellular and circuit mechanisms of seizure generation
and evolution. State of the art two-photon microscopy and wide-field fluorescence
imaging can record the activity in epileptic networks at multiple scales, from neuronal
microcircuits to brain-wide networks. These approaches exploit transgenic and viral
technologies to target genetically encoded calcium and voltage sensitive indicators to
subclasses of neurons, and achieve genetic specificity, spatial resolution and scalability
that can complement electrophysiological recordings from awake animal models of
epilepsy. Two-photon microscopy is well suited to study single neuron dynamics
during interictal and ictal events, and highlight the differences between the activity of
excitatory and inhibitory neuronal classes in the focus and propagation zone. In contrast,
wide-field fluorescence imaging provides mesoscopic recordings from the entire cortical
surface, necessary to investigate seizure propagation pathways, and how the unfolding
of epileptic events depends on the topology of brain-wide functional connectivity.
Answering these questions will inform pre-clinical studies attempting to suppress
seizures with gene therapy, optogenetic or chemogenetic strategies. Dissecting which
network nodes outside the seizure onset zone are important for seizure generation,
propagation and termination can be used to optimize current and future evaluation
methods to identify an optimal surgical strategy.
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INTRODUCTION

Unraveling the mechanisms underlying the development of epilepsy (i.e., epileptogenesis) and the
generation of seizures (i.e., ictogenesis) requires one to study brain networks at multiple scales.
In many patients, seizures arise from a localized focus, where acquired lesions or congenital
abnormalities predispose to aberrant recruitment of neuronal activity in the rest of the brain (Wiebe
and Jette, 2012). Yet, even in focal epilepsies, none of the circuitry at the ictogenic focus operates
in isolation; rather, it is embedded in an intricate network, where local and distal brain areas are
connected by short- and long-range axon collaterals. Indeed, epilepsy can be viewed as a system
disorder, whereby both local and dispersed regions of abnormality result in distributed pathological
networks (Bernhardt et al., 2013).
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Not to miss the forest for the trees, we would ideally need to
record in exquisite detail neuronal activity both at the seizure
focus and in brain-wide networks. Two state-of-the-art optical
imaging technologies, two-photon imaging and wide-field
fluorescence imaging, can bridge the gap between neuron-level
and whole brain seizure mechanisms, and shed light on the
local and global mechanisms triggering epileptic networks. We
further argue that the combination of imaging, electrophysiology
and optogenetics could identify which neuronal classes, circuits
and network nodes are causally involved in the progression of
ictogenesis: such ‘‘choke points’’ could be targeted by therapeutic
strategies (Paz and Huguenard, 2015).

IMAGING NEURONAL ACTIVITY AT
MULTIPLE SCALES

Imaging technologies based on fluorescent reporters have
revolutionized neurophysiology with the ability to read out
neuronal activity in unprecedented detail in vivo. Fluorescent
sensors, when excited at the appropriate wavelength, change their
fluorescence intensity, or color, as a function of neuronal activity
(Figure 1A). Synthetic organic dyes can be loaded non-invasively
into the brain (Tsien, 1981), while protein-based sensors can
be genetically encoded (Miyawaki et al., 1997; Nakai et al.,
2001). Reporters can be tailored to record a variety of aspects
of cellular physiology (Lin and Schnitzer, 2016): voltage sensors
can be intercalated in the cellular membrane to read out the
voltage across the membrane (Peterka et al., 2011); ion indicators
have been developed to measure calcium (Grienberger and
Konnerth, 2012), chloride (Arosio and Ratto, 2014), or proton
concentrations in the cytosol; and neurotransmitter sensors can
detect release at synapses or in the extra-synaptic space (Marvin
et al., 2013). Accordingly, the appropriate sensors can report
most of the hallmarks of the transition from normal processing
to epileptic activity, including abnormal activity of individual
neurons (Figure 1A) and the resulting hypersynchronous firing
in a neuronal network (Figure 1B).

Optical imaging methods offer the cell-type specificity,
spatial resolution and scalability to complement biases and
limitations of electrophysiological recordings in epilepsy
research. Electrophysiological recordings remain the gold
standard to recognize and study epileptic activity: these methods
benefit from high temporal resolution and can be applied in
human patients. Multi-electrode extracellular probes can record
simultaneously from hundreds of neurons (Jun et al., 2017),
reaching even to deep structures: yet their readout is spatially
restricted and biased to active neurons. Determining cell type
firing is difficult, particularly during a seizure when distortions
of action potential waveform prevent spike sorting (Merricks
et al., 2015). Alternatively, high density surface arrays can be
applied to monitor large portions of cortex: however, they
pose difficulties to accurately localize neuronal activity due to
poor spatial sampling and volume conduction (Viventi et al.,
2011).

Specificity is the key: genetically encoded fluorescent
reporters can be expressed under the control of cell-type

specific promoters (Madisen et al., 2015), recording at once
both activity and genetic identity of the target neurons. For
instance, excitatory and inhibitory neurons can be tagged
with sensors of different colors and recorded simultaneously
in different channels with multispectral imaging (Bouchard
et al., 2009; Brondi et al., 2012; Dana et al., 2016). Molecular
engineering constantly improves and expands the palette of
genetically encoded reporters and actuators (Chen et al., 2013;
Dana et al., 2016). Transgenic animal generation (Madisen
et al., 2015) and designer viral vectors (Chan et al., 2017) are
increasingly used to deliver stable non-cytotoxic expression of
reporters in neurons. In parallel, cranial window preparations
for chronic imaging have been optimized, allowing activity
to be monitored for many hours over the course of weeks
and, importantly, in awake animals (Goldey et al., 2014).
As a result, imaging yields open-ended, unbiased recordings
from all the neurons of interest, both active and silent
ones.

Two-photon laser scanning microscopy (Denk et al., 1990)
can achieve simultaneous recording from many thousands
of neurons in a densely packed cortical column (Pachitariu
et al., 2016), an impossible target even for the most advanced
electrode array. Two-photon excitation is confined to the
focal spot by using pulsed infrared lasers, which provide
optical sectioning with micrometre-scale spatial resolution.
Moreover, infrared light can penetrate deep in brain tissue:
the laser focus can be scanned to reconstruct images from
all cortical layers (Figure 1C). In order to image larger
neuronal circuits simultaneously, 3D scanning optics can be
used for volumetric recordings of ∼1 mm3 cortical columns
(Göbel and Helmchen, 2007; Grewe et al., 2011; Nadella
et al., 2016). Adaptive optics and three-photon microscopy
systems, more robust to optical aberrations arising at increasing
imaging depths, achieve recordings in the mouse hippocampus
(Ouzounov et al., 2017). Alternatively, cranial windows can
be customized with prisms (Andermann et al., 2013) or
periscopes (Barretto et al., 2009) to allow coronal imaging
of cortical layers and recordings from deep brain structures.
Automated pipelines for image registration, segmentation and
detection of neuronal activity are also constantly improving and
widely available (Pnevmatikakis et al., 2015; Pachitariu et al.,
2016).

Wide-field epifluorescence macroscopes (Ratzlaff and
Grinvald, 1991) allow one to record activity over the whole
cortical surface at fast rates (Mohajerani et al., 2013),
representing a substantial advance over electrophysiological
recordings performed relatively sparsely at multiple sites
(Figure 1D). Wide-field macroscopes are relatively inexpensive
to build, with the best optics and cameras that can achieve a
spatial resolution of ∼50 µm and frame rates up to the kHz
range.Wide-field imaging can be used tomap the organization of
cortical areas and reveal the topology of functional connectivity
among them (Kalatsky and Stryker, 2003; Mohajerani et al.,
2013). Moreover, wide-field imaging has been combined with
multisite electrode probes to correlate cortical activations
patterns with neuronal activity recorded in deep brain structures
(Xiao et al., 2017).
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FIGURE 1 | Fluorescence imaging of epileptic activity at multiple scales. (A) Fluorescent activity reporters can be targeted to neurons to read out their activity.
Reporters change the intensity, or wavelength, of their fluorescence as a function of neuronal activity. (B) Fluorescent reporters targeted to neurons at the population
level read out the hallmarks of epileptic activity. During normal processing (top), neuronal activity is sparse and EEG is desynchronized. During seizures, activity
escalates recruiting most of the neurons in the network and generates hypersynchronous EEG oscillations. (C) Two-photon imaging can be used to record neuronal
activity with single cell resolution in a small cortical volume. 3D-reconstruction of a 400 × 800 × 650 µm volume recorded in vivo in the visual cortex of a transgenic
mouse expressing the genetically encoded calcium indicator GCaMP6s in neocortical excitatory neurons across layers (magenta dotted lines). (D) Wide-field imaging
can be used to record neuronal activity over the entire dorsal cortex of rodents. Example fluorescence image of the dorsal cortex from a mouse expressing the
genetically encoded calcium indicator GCaMP6s in all neocortical excitatory neurons (courtesy of Dr. Nicholas A. Steinmetz). (E) Two-photon microscopy can record
single neuron dynamics during interictal and ictal discharges, and highlight the differences between the activity of excitatory (green) and inhibitory (magenta) neuronal
classes in the focus and propagation penumbra. (F) Wide-field fluorescence imaging provides mesoscopic mapping of the functional anatomy of the cortex (green
outlines, current neuro-anatomical subdivisions of mouse cortex from the Allen Brain Atlas); it can investigate seizure propagation pathways and ask how the
unfolding of epileptic events depends on the topology of brain wide functional connectivity.

Recent advances in optics aim to combine the advantages
of scanning microscopy and wide-field imaging, towards the
tantalizing vision of a single system capable of imaging large
fields of view, at fast rates, with single cell resolution. Mesoscopic

objectives can be tailored for two-photon imaging over an entire
hemisphere of the mouse brain (Ji et al., 2016). In addition,
excitation laser pulses can be multiplexed in space or time to scan
simultaneously different focal spots and image larger volumes

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 March 2018 | Volume 12 | Article 82

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Rossi et al. Imaging Epileptic Networks at Multiple Scales

in less time (Cheng et al., 2011; Yang et al., 2016). Finally,
holography can create bespoke illumination patterns to achieve
scan-less imaging of a selection of neurons of interest (Nikolenko
et al., 2008; Bovetti et al., 2017). A more detailed review of the
growing number of microscopy techniques available for in vivo
imaging of neuronal activity has recently been published (Yang
and Yuste, 2017).

EPILEPSY IN THE SPOTLIGHT: FIRST
INSIGHTS FROM IN VIVO IMAGING
STUDIES

Several recent studies adopted fluorescence imaging methods
to investigate the cellular and circuit mechanisms of epileptic
networks in animal models. In particular, mice have become a
powerful model organism for analyzing genetic diseases, thanks
to their genetic tractability. It is possible to derive transgenic lines
that harbor mutations in genes found in human forms of genetic
epilepsy: for example mouse models of Dravet syndrome (Yu
et al., 2006), temporal lobe epilepsy (Chabrol et al., 2010) and
migraine associated with seizures (van den Maagdenberg et al.,
2004) have been developed. Despite these significant advances,
imaging of rare spontaneous seizures have proven difficult,
and researches have often resorted to study pharmacologically
induced seizures. One of the main challenges ahead will be to
develop continuous in-cage imaging of brain activity in freely
moving mice prone to spontaneous seizures.

Wide-field calcium imaging was adopted to investigate the
spatio-temporal evolution of interictal and ictal discharges
and relate it to the functional connectivity underlying normal
processing in the awake cortex. Full-blown seizures and
brief interictal events were elicited by focal chemoconvulsant
application to the primary visual cortex: both types of events
started as standing waves, displaying activity that rose and abated
quasi-simultaneously in the V1 focus and in connected locations
in higher areas (Rossi et al., 2017). Following this common
beginning, however, interictal waves decayed to baseline, while
seizures persisted and propagated in the cortex. Importantly, this
propagation respected the functional connectivity of the visual
cortex: areas with a similar retinotopic mapping as the primary
focus were recruited before areas that mapped onto different
retinal positions (Rossi et al., 2017). These events were so
spatially stereotyped that even the prominent oscillations typical
of seizures propagated along homotopic connectivity (Rossi et al.,
2017).

Once a seizure generalizes, the relationship between patterns
of activity and cortical topology becomes more complex: several
voltage and calcium imaging studies confirmed that multiple
leading regions other than the focus appear to concurrently
pace the seizure oscillations (Smith et al., 2016), giving rise to
competing spiral waves (Huang et al., 2010; Rossi et al., 2017),
colliding planar waves, or more intricate motifs and dynamics
(Liou et al., 2017).

In parallel, two-photon calcium imaging has been used to
record from excitatory and inhibitory neurons in the ictal
penumbra, and elucidate the role of inhibition in restraining

dynamics of seizure propagation (Trevelyan et al., 2006, 2007).
Similarly to the findings from wide-field studies, neuronal
populations within and across cortical layers were recruited
in a reliable manner, with stereotyped spatial direction of
propagation, supposedly constrained by local connectivity.
Interestingly, the temporal dynamics of this recruitment were
variable across seizures: such ‘‘elasticity’’ depended on the
activity of local GABAergic neurons (Wenzel et al., 2017). Acute
breakdown of distant inhibition also allowed the development of
a secondary focus, with seizures in this area triggered by input
from the original focus (Liou et al., 2017). These results suggest
that inhibition not only plays an important role in containing
seizure invasion close to adjacent cortex, but also protects areas
distant from the seizure focus.

Previous to this work, two-photon imaging was also
used to examine which microcircuits participate in inter-
ictal discharges in awake animals and how their activity
interferes with normal processing. In a chronic model of
temporal lobe epilepsy, hippocampal interictal discharges
recruited variable cellular dynamics, yet with preferential
involvement of GABAergic neurons (Muldoon et al., 2015). In
the visual cortex, acutely induced inter-ictal spiking interfered
with visual responses evoked in the connected contralateral
visual cortex, although this region was not recruited to the
epileptiform activity (Petrucco et al., 2017). As inter-ictal
spiking is associated with cognitive impairments (Binnie, 2003)
and aberrant hippocampal interneuron firing is correlated
with cognitive dysfunction (Lewis et al., 2012) these studies
suggest a plausible link between inter-ictal spiking, GABAergic
activation and cognitive deficits, which could also derive from
impaired processing in regions downstream of the ictogenic
focus.

Imaging has also played a prominent role in defining
the importance of astrocytes in modulating neuronal activity
during ictogenesis (Carmignoto and Haydon, 2012). Indeed,
while astrocytes are not electrically excitable cells, they
signal their activity with prominent intracellular calcium
oscillations (Losi et al., 2017). Dysfunctional astrocytes have
been proposed to promote ictogenesis modulating neuronal
excitability and synchrony (Gómez-Gonzalo et al., 2010; Coulter
and Steinhäuser, 2015). Recent recordings in vivo called
into question these hypotheses, showing that the astrocyte
syncytium is indeed recruited into a dramatic ‘‘calcium wave’’
of activation during ictal discharges, but this wave starts
after seizure onset and unfolds with spatio-temporal dynamics
that seem uncoupled from the underlying neuronal activity
(Daniel et al., 2015; Baird-Daniel et al., 2017). These studies
suggest that glial activation might not be required for ictal
initiation and propagation, as blockade of glial calcium signaling
had no impact on seizure dynamics (Baird-Daniel et al.,
2017).

OUTLOOK: OPEN QUESTIONS TO DESIGN
NEW THERAPEUTIC STRATEGIES

An ongoing debate regards the dynamics of neuronal firing
in the ictogenic network (Szabo et al., 2015). Decades of
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electrophysiological studies established the classical view of
epileptic seizures as hypersynchronous and stereotyped events
(McCormick and Contreras, 2001). Synchronicity implies
coherent firing in the local population, while stereotypy refers
to fixed temporal firing patterns that are repeated across
epileptic events. While many recordings from humans and
animals confirmed highly coherent firing at the focus and
decreased coherence in the regions surrounding the focus
(Schevon et al., 2012; Smith et al., 2016), recent analysis
of human recordings reported unexpected contrasting results,
showing either low coherence but high reproducibility of
neuronal spiking patterns (Truccolo et al., 2011) or completely
variable recruitment patterns of the same neurons (Bower et al.,
2012).

A related question concerns the difference between seizures,
and the numerous, brief interictal discharges that occur between
them. It is not known if ictal and interictal discharges originate in
similar populations, and if the two types of event differ from the
very beginning in terms of neuronal recruitment and temporal
evolution (Prince and Wilder, 1967; de Curtis and Avanzini,
2001). Understanding these factors would help clarify why one
type of event propagates and the other does not (Huberfeld et al.,
2011).

Two-photon imaging could provide a unifying description
of population dynamics during interictal and ictal discharges,
and highlight the differences between activity in the focus
and propagation zone (Figure 1E). Current unanswered
questions and controversies could be due to the technical
pitfalls of electrophysiological recordings, which allow only
sparse sampling of the local neuronal population (Wenzel
et al., 2017). Two-photon imaging can overcome these
limitations, and can be used to ascertain the principles
governing population activity in animal models of epilepsy.
These principles, in turn, will guide the interpretation of
electrophysiological recordings from human subjects: such
interpretation is paramount for the correct localization of the
ictogenic focus, particularly when brain surgery is the only
option available to patients with pharmacoresistant focal epilepsy
(Schevon et al., 2012).

Another important set of questions relates to the role of
different excitatory or inhibitory neuronal classes, and the
conserved circuit motifs connecting them, in generating,
propagating and modulating seizure activity (Paz and
Huguenard, 2015). A longstanding view states that seizures
arise from an imbalance between excitation and inhibition
in cortical circuits (Prince and Wilder, 1967), and depend
on critical nodes in the circuit (Paz and Huguenard, 2015).
Intensely studied examples include feedforward inhibition
by parvalbumin positive cells, which have an important
role to restrain the propagation of cortical focal seizures
(Sessolo et al., 2015), and cortico-thalamo-cortical loops,
which underlie spike-wave discharges in absence epilepsies
(Sorokin et al., 2016). The combination of two-photon
imaging and intersectional genetic strategies can clarify
which neuronal classes, and what circuits, are critical for
the progression of ictogenesis; such investigations will pave the
way for pre-clinical studies attempting to target these ‘‘choke

points’’ with gene therapy, optogenetic and chemogenetic
strategies (Krook-Magnuson and Soltesz, 2015; Paz and
Huguenard, 2015). For instance, inhibition of principal cells
with targeted overexpression of K+ channels or inhibitory
opsins (Wykes et al., 2012), and designer receptors exclusively
activated by designer drugs (Kätzel et al., 2014) have been
shown to attenuate seizures; alternatively, activation of
interneurons with excitatory opsins has also been used to
suppress seizures (Krook-Magnuson et al., 2013). While
these results are exciting, a recent study suggested that
untimely stimulation of parvalbumin positive interneurons
might in fact favor the generation of epileptiform discharges
(Sessolo et al., 2015; Shiri et al., 2015; Yekhlef et al., 2015).
Therefore, a deeper understanding of how these manipulations
affect network excitability is needed to avoid off-target
effects.

A final question that remains to be elucidated is how
the unfolding of epileptic events depends on the topology
of brain-wide functional connectivity. In the classical view,
seizure spread mimics a brushfire, which progressively wears
down inhibitory restraints to recruit contiguous circuitry, as in
the ‘‘Jacksonian march’’ seen in the motor cortex. However,
somewhat in contrast with this classical view, seizures also
spread to distal regions, involving both hemispheres and
subcortical centers. The principles that underlie propagation
through such a distributed ‘‘epileptic network’’ are incompletely
understood: we do not know whether pathological connectivity
is required or whether seizures spread along the same functional
pathways that support information processing during normal
cortical activity. Moreover, once the seizure generalizes it is
unclear how different areas interact to maintain the seizure,
if pacemaker areas important for seizure maintenance exist,
and what pathways promote seizure termination, which is
often mysteriously synchronous across the brain (Smith et al.,
2016). Answering these questions can explain why surgery
might not work in some cases, and, perhaps most crucially,
how to optimize current and future evaluation methods
to predict an optimal surgical strategy (Goodfellow et al.,
2016).

Wide-field calcium imaging could be an important tool
to answer these questions, and help devise a predictive
modeling framework to quantify the contribution of different
network component to ictogenesis (Figure 1F), to improve
the outcome of treatment (Goodfellow et al., 2016). The map
of the structural and functional connectivity between brain
areas can be used as a reference to probe the dynamic
interactions of the epileptic focus with other functionally
connected regions (Rossi et al., 2017). Multiplexed recordings
from excitatory and inhibitory neuronal populations will
allow to understand and compare pathways for normal
processing and epilepsy, and dissect how the breakdown of
inhibition promotes seizure propagation (Trevelyan et al., 2007;
Schevon et al., 2012). Finally, imaging during generalized
seizures, and analysis of differences and commonalities between
various pharmacological and genetic models, can be used
to identify nodes outside the focus important for seizure
generation, maintenance and termination (Liou et al., 2017).

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 March 2018 | Volume 12 | Article 82

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Rossi et al. Imaging Epileptic Networks at Multiple Scales

For example, it has been proposed that seizures, analogously
to cardiac arrhythmias, could be terminated by the mutual
annihilation of spiral waves and planar waves originating
from different seizing regions: this would have implications
for electrical stimulation or optogenetic strategies to disrupt
seizures (Viventi et al., 2011). Lastly, wide field imaging
can also reveal the causal interaction between seizures and
other circuit dysfunctions such as cortical and subcortical
spreading depression (Farkas et al., 2008), which have been
implicated in post-ictal headache (Charles and Baca, 2013)
and sudden unexpected death in epilepsy (Aiba and Noebels,
2015).
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Nadella, K. M. N. S., Roš, H., Baragli, C., Griffiths, V. A., Konstantinou, G.,
Koimtzis, T., et al. (2016). Random-access scanningmicroscopy for 3D imaging
in awake behaving animals. Nat. Methods 13, 1001–1004. doi: 10.1038/nmeth.
4033

Nakai, J., Ohkura, M., and Imoto, K. (2001). A high signal-to-noise Ca2+ probe
composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141.
doi: 10.1038/84397

Nikolenko, V.,Watson, B. O., Araya, R.,Woodruff, A., Peterka, D. S., and Yuste, R.
(2008). SLM microscopy: scanless two-photon imaging and photostimulation
using spatial light modulators. Front. Neural Circuits 2:5. doi: 10.3389/neuro.
04.005.2008

Ouzounov, D. G., Wang, T., Wang, M., Feng, D. D., Horton, N. G., Cruz-
Hernández, J. C., et al. (2017). In vivo three-photon imaging of activity
of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 14,
388–390. doi: 10.1038/nmeth.4183

Pachitariu, M., Stringer, C., Schröder, S., Dipoppa, M., Rossi, L. F., Carandini, M.,
et al. (2016). Suite2p: beyond 10,000 neurons with standard two-photon
microscopy. bioRxiv 61507.

Paz, J. T., and Huguenard, J. R. (2015). Microcircuits and their interactions in
epilepsy: is the focus out of focus? Nat. Neurosci. 18, 351–359. doi: 10.1038/nn.
3950

Peterka, D. S., Takahashi, H., and Yuste, R. (2011). Imaging voltage in neurons.
Neuron 69, 9–21. doi: 10.1016/j.neuron.2010.12.010

Petrucco, L., Pracucci, E., Brondi, M., Ratto, G. M., and Landi, S. (2017).
Epileptiform activity in the mouse visual cortex interferes with cortical
processing in connected areas. Sci. Rep. 7:40054. doi: 10.1038/srep43808

Pnevmatikakis, E. A., Soudry, D., Gao, Y., Machado, T. A., Merel, J., Pfau, D.,
et al. (2015). Simultaneous denoising, deconvolution, and demixing of calcium
imaging data. Neuron 89, 285–299. doi: 10.1016/j.neuron.2015.11.037

Prince, D. A., and Wilder, B. J. (1967). Control mechanisms of cortical
epileptogenic foci. ‘‘Surround’’ inhibition. Arch Neurol. 16, 194–202.
doi: 10.1001/archneur.1967.00470200082007

Ratzlaff, E. H., and Grinvald, A. (1991). A tandem-lens epifluorescence
macroscope: hundred-fold brightness advantage for wide-field
imaging. J. Neurosci. Methods 36, 127–137. doi: 10.1016/0165-0270(91)
90038-2

Rossi, L. F., Wykes, R. C., Kullmann, D. M., and Carandini, M. (2017). Focal
cortical seizures start as standing waves and propagate respecting homotopic
connectivity. Nat. Commun. 8:217. doi: 10.1038/s41467-017-00159-6

Schevon, C. A., Weiss, S. A., McKhann, G. Jr., Goodman, R. R., Yuste, R.,
Emerson, R. G., et al. (2012). Evidence of an inhibitory restraint of seizure
activity in humans. Nat. Commun. 3:1060. doi: 10.1038/ncomms2056

Sessolo, M., Marcon, I., Bovetti, S., Losi, G., Cammarota, M., Ratto, G. M., et al.
(2015). Parvalbumin-positive inhibitory interneurons oppose propagation but
favor generation of focal epileptiform activity. J. Neurosci. 35, 9544–9557.
doi: 10.1523/JNEUROSCI.5117-14.2015

Shiri, Z., Manseau, F., Lévesque, M., Williams, S., and Avoli, M. (2015).
Interneuron activity leads to initiation of low-voltage fast-onset seizures. Ann.
Neurol. 77, 541–546. doi: 10.1002/ana.24342

Smith, E. H., Liou, J., Davis, T. S., Merricks, E. M., Kellis, S. S., Weiss, S. A., et al.
(2016). The ictal wavefront is the spatiotemporal source of discharges during
spontaneous human seizures. Nat. Commun. 7:11098. doi: 10.1038/ncomms
11098

Sorokin, J. M., Davidson, T. J., Frechette, E., Abramian, A. M., Deisseroth, K.,
Huguenard, J. R., et al. (2016). Bidirectional control of generalized epilepsy
networks via rapid real-time switching of firing mode. Neuron 93, 194–210.
doi: 10.1016/j.neuron.2016.11.026

Szabo, G. G., Schneider, C. J., and Soltesz, I. (2015). Resolution revolution: epilepsy
dynamics at the microscale. Curr. Opin. Neurobiol. 31, 239–243. doi: 10.1016/j.
conb.2014.12.012

Trevelyan, A. J., Sussillo, D., Watson, B. O., and Yuste, R. (2006). Modular
propagation of epileptiform activity: evidence for an inhibitory veto
in neocortex. J. Neurosci. 26, 12447–12455. doi: 10.1523/jneurosci.2787
-06.2006

Trevelyan, A. J., Sussillo, D., and Yuste, R. (2007). Feedforward inhibition
contributes to the control of epileptiform propagation speed. J. Neurosci. 27,
3383–3387. doi: 10.1523/jneurosci.0145-07.2007

Truccolo, W., Donoghue, J. A., Hochberg, L. R., Eskandar, E. N., Madsen, J. R.,
Anderson,W. S., et al. (2011). Single-neuron dynamics in human focal epilepsy.
Nat. Neurosci. 14, 635–641. doi: 10.1038/nn.2782

Tsien, R. Y. (1981). A non-disruptive technique for loading calcium buffers and
indicators into cells. Nature 290, 527–528. doi: 10.1038/290527a0

van den Maagdenberg, A. M. J. M, Pietrobon, D., Pizzorusso, T., Kaja, S., Broos,
L. A. M., Cesetti, T., et al. (2004). A Cacna1a knockin migraine mouse
model with increased susceptibility to cortical spreading depression. Neuron
41, 701–710. doi: 10.1016/S0896-6273(04)00085-6

Viventi, J., Kim, D. H., Vigeland, L., Frechette, E. S., Blanco, J. A., Kim, Y. S., et al.
(2011). Flexible, foldable, actively multiplexed, high-density electrode array for
mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605. doi: 10.1038/nn.
2973

Wenzel, M., Hamm, J. P., Peterka, D. S., and Yuste, R. (2017). Reliable and elastic
propagation of cortical seizures in vivo. Cell Rep. 19, 2681–2693. doi: 10.1016/j.
celrep.2017.05.090

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 March 2018 | Volume 12 | Article 82

https://doi.org/10.1038/nn.4358
https://doi.org/10.1038/nature24636
https://doi.org/10.1016/S0896-6273(03)00286-1
https://doi.org/10.1038/ncomms4847
https://doi.org/10.1038/ncomms2376
https://doi.org/10.1038/nn.3943
https://doi.org/10.1016/j.tins.2011.10.004
https://doi.org/10.1038/nn.4359
https://doi.org/10.3389/fncel.2017.00134
https://doi.org/10.1016/j.neuron.2015.02.022
https://doi.org/10.1038/nmeth.2333
https://doi.org/10.1038/nmeth.2333
https://doi.org/10.1146/annurev.physiol.63.1.815
https://doi.org/10.1146/annurev.physiol.63.1.815
https://doi.org/10.1093/brain/awv208
https://doi.org/10.1093/brain/awv208
https://doi.org/10.1038/42264
https://doi.org/10.1038/nn.3499
https://doi.org/10.1038/nn.3499
https://doi.org/10.1093/brain/awv227
https://doi.org/10.1038/nmeth.4033
https://doi.org/10.1038/nmeth.4033
https://doi.org/10.1038/84397
https://doi.org/10.3389/neuro.04.005.2008
https://doi.org/10.3389/neuro.04.005.2008
https://doi.org/10.1038/nmeth.4183
https://doi.org/10.1038/nn.3950
https://doi.org/10.1038/nn.3950
https://doi.org/10.1016/j.neuron.2010.12.010
https://doi.org/10.1038/srep43808
https://doi.org/10.1016/j.neuron.2015.11.037
https://doi.org/10.1001/archneur.1967.00470200082007
https://doi.org/10.1016/0165-0270(91)90038-2
https://doi.org/10.1016/0165-0270(91)90038-2
https://doi.org/10.1038/s41467-017-00159-6
https://doi.org/10.1038/ncomms2056
https://doi.org/10.1523/JNEUROSCI.5117-14.2015
https://doi.org/10.1002/ana.24342
https://doi.org/10.1038/ncomms11098
https://doi.org/10.1038/ncomms11098
https://doi.org/10.1016/j.neuron.2016.11.026
https://doi.org/10.1016/j.conb.2014.12.012
https://doi.org/10.1016/j.conb.2014.12.012
https://doi.org/10.1523/jneurosci.2787-06.2006
https://doi.org/10.1523/jneurosci.2787-06.2006
https://doi.org/10.1523/jneurosci.0145-07.2007
https://doi.org/10.1038/nn.2782
https://doi.org/10.1038/290527a0
https://doi.org/10.1016/S0896-6273(04)00085-6
https://doi.org/10.1038/nn.2973
https://doi.org/10.1038/nn.2973
https://doi.org/10.1016/j.celrep.2017.05.090
https://doi.org/10.1016/j.celrep.2017.05.090
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Rossi et al. Imaging Epileptic Networks at Multiple Scales

Wiebe, S., and Jette, N. (2012). Pharmacoresistance and the role of surgery in
difficult to treat epilepsy. Nat. Rev. Neurol. 8, 669–677. doi: 10.1038/nrneurol.
2012.181

Wykes, R. C., Heeroma, J. H., Mantoan, L., Zheng, K., MacDonald, D. C.,
Deisseroth, K., et al. (2012). Optogenetic and potassium channel gene therapy
in a rodent model of focal neocortical epilepsy. Sci. Transl. Med. 4:161ra152.
doi: 10.1126/scitranslmed.3004190

Xiao, D., Vanni, M. P., Mitelut, C. C., Chan, A. W., Ledue, J. M., Xie, Y., et al.
(2017). Mapping cortical mesoscopic networks of single spiking cortical or
sub-cortical neurons. Elife 6:e19976. doi: 10.7554/elife.19976

Yang, W., Miller, J. E., Carrillo-Reid, L., Pnevmatikakis, E., Paninski, L., Yuste, R.,
et al. (2016). Simultaneous multi-plane imaging of neural circuits. Neuron 89,
269–284. doi: 10.1016/j.neuron.2015.12.012

Yang, W., and Yuste, R. (2017). In vivo imaging of neural activity. Nat. Methods
14, 349–359. doi: 10.1038/nmeth.4230

Yekhlef, L., Breschi, G. L., Lagostena, L., Russo, G., and Taverna, S.
(2015). Selective activation of parvalbumin- or somatostatin-expressing
interneurons triggers epileptic seizurelike activity in mouse medial

entorhinal cortex. J. Neurophysiol. 113, 1616–1630. doi: 10.1152/jn.
00841.2014

Yu, F. H., Mantegazza, M., Westenbroek, R. E., Robbins, C. A., Kalume, F.,
Burton, K. A., et al. (2006). Reduced sodium current in GABAergic
interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat.
Neurosci. 9, 1142–1149. doi: 10.1038/nn1754

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Rossi, Kullmann and Wykes. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 March 2018 | Volume 12 | Article 82

https://doi.org/10.1038/nrneurol.2012.181
https://doi.org/10.1038/nrneurol.2012.181
https://doi.org/10.1126/scitranslmed.3004190
https://doi.org/10.7554/elife.19976
https://doi.org/10.1016/j.neuron.2015.12.012
https://doi.org/10.1038/nmeth.4230
https://doi.org/10.1152/jn.00841.2014
https://doi.org/10.1152/jn.00841.2014
https://doi.org/10.1038/nn1754
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

	The Enlightened Brain: Novel Imaging Methods Focus on Epileptic Networks at Multiple Scales
	INTRODUCTION
	IMAGING NEURONAL ACTIVITY AT MULTIPLE SCALES
	EPILEPSY IN THE SPOTLIGHT: FIRST INSIGHTS FROM IN VIVO IMAGING STUDIES
	OUTLOOK: OPEN QUESTIONS TO DESIGN NEW THERAPEUTIC STRATEGIES
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	REFERENCES


