231 research outputs found

    The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases.

    Get PDF
    The systemic and organ-specific human fibrotic disorders collectively represent one of the most serious health problems world-wide causing a large proportion of the total world population mortality. The molecular pathways involved in their pathogenesis are complex and despite intensive investigations have not been fully elucidated. Whereas chronic inflammatory cell infiltration is universally present in fibrotic lesions, the central role of monocytes and macrophages as regulators of inflammation and fibrosis has only recently become apparent. However, the precise mechanisms involved in the contribution of monocytes/macrophages to the initiation, establishment, or progression of the fibrotic process remain largely unknown. Several monocyte and macrophage subpopulations have been identified, with certain phenotypes promoting inflammation whereas others display profibrotic effects. Given the unmet need for effective treatments for fibroproliferative diseases and the crucial regulatory role of monocyte/macrophage subpopulations in fibrogenesis, the development of therapeutic strategies that target specific monocyte/macrophage subpopulations has become increasingly attractive. We will provide here an overview of the current understanding of the role of monocyte/macrophage phenotype subpopulations in animal models of tissue fibrosis and in various systemic and organ-specific human fibrotic diseases. Furthermore, we will discuss recent approaches to the design of effective anti-fibrotic therapeutic interventions by targeting the phenotypic differences identified between the various monocyte and macrophage subpopulations

    Endostatin expression in a pancreatic cell line is modulated by a TNFα-dependent elastase

    Get PDF
    Endostatin, an inhibitor of angiogenesis, is a 20 kDa fragment of the basement membrane protein, collagen XVIII. The formation of endostatin relies upon the action of proteases on collagen XVIII. TNFα, produced by activated macrophages, is a multifunctional proinflammatory cytokine with known effects on endothelial function. We postulated that TNFα may modulate the activities of proteases and thus regulate endostatin formation in pancreatic cells. Collagen XVIII/endostatin mRNA was expressed in one pancreatic cell line, SUIT-2, but not in BxPc-3. The 20 kDa endostatin was found in the cell-conditioned medium of SUIT-2 cells. Precursor forms only were found in the cells. Exogenous endostatin was degraded by cellular lysates of SUIT-2 cells. Elastase activity was found in cell extracts but not the cell-conditioned media of SUIT-2 cells. Incubation of SUIT-2 cells with TNFα increased intracellular elastase activity and also increased secretion of endostatin into the medium. We conclude that endostatin is released by SUIT-2 cells and that increases in intracellular elastase, induced by TNFα, are correlated with increased secretion. Endostatin is however susceptible to degradation by intracellular proteases and if tissue injury accompanies inflammation, endostatin may be degraded, allowing angiogenesis to occur

    Effects of implantation of bone marrow cells on cytokine levels in the ischemic heart tissue. An experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to achieve a safe and persistent angiogenic effect, we investigated the potential of bone marrow cells implantation to enhance angiogenesis of ischemic hearts in a rat model, and also we have investigated growth factors accompanying and intermediating the angiogenesis, and the changes occurring in the levels of cytokines and their relations with angiogenesis.</p> <p>Methods</p> <p>30 adult male Wistar albino rats from the same colony were used. After anterior myocardial infarction induced by occlusion of the left anterior descending artery, they were divided into two groups (Group I and Group II). 2 × 10<sup>7 </sup>bone marrow cells suspended in 0.1 ml phosphate-buffered saline solution and 0.1 ml phosphate-buffered saline solution were injected at six points in the infarcted area in Group I and Group II respectively. Changes in the vascular density and, vascular endothelial growth factor, vascular cell adhesion molecule and cytokine levels in the infarcted myocardium after bone marrow cells implantation were examined.</p> <p>Results</p> <p>The implantation assay showed that bone marrow cells induced angiogenesis. Light microscopic analysis of the vascular density in the ischemic area showed that, angiogenesis had been induced to higher in Group I than Group II. Levels of vascular endothelial growth factor, vascular cell adhesion molecule and the inflammatory cytokines such as interleukin-1 and tumor necrosis factor-α in Group I were significantly elevated compared with those in Group II.</p> <p>Conclusion</p> <p>Bone marrow cells implantation induced angiogenesis in a rat ischemic heart model as a result of increase of the levels of vascular endothelial growth factor, vascular cell adhesion molecule, interleukin-1, and tumor necrosis factor-α.</p

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    The Lack of ADAM17 Activity during Embryonic Development Causes Hemorrhage and Impairs Vessel Formation

    Get PDF
    Background: ADAM17/TACE activity is important during embryonic development. We wished to investigate possible roles of this metalloprotease, focusing on vascular development. Methodology/Principal Findings: Mice mutant in the enzymatic activity of ADAM17 were examined at various stages of embryonic development for vascular pattern and integrity using markers for vessel wall cells. We observed hemorrhage and edema starting at embryonic day E14.5 and becoming more severe as development proceeded; prior to embryonic day E14.5, embryos appeared normal. Staining for PECAM-1/CD31 revealed abnormalities in the patterns of branching of the embryonic vasculature at E14.5. Conclusions/Significance: These abnormalities preceded association of pericytes or monocyte/macrophage cells with the affected vessels and, therefore, presumably arise from defects in endothelial function consequent upon failure of ADAM17 to cleave one or more substrates involved in vascular development, such as Notch, Delta, VEGFR2 or JAM-A. Our study demonstrates a role for ADAM17 in modulating embryonic vessel development and function

    Ocular Delivery of Compacted DNA-Nanoparticles Does Not Elicit Toxicity in the Mouse Retina

    Get PDF
    Subretinal delivery of polyethylene glycol-substituted lysine peptide (CK30PEG)-compacted DNA nanoparticles results in efficient gene expression in retinal cells. This work evaluates the ocular safety of compacted DNA nanoparticles. CK30PEG-compacted nanoparticles containing an EGFP expression plasmid were subretinally injected in adult mice (1 µl at 0.3, 1.0 and 3.0 µg/µl). Retinas were examined for signs of inflammation at 1, 2, 4 and 7 days post-injection. Neither infiltration of polymorphonuclear neutrophils or lymphocytes was detected in retinas. In addition, elevation of macrophage marker F4/80 or myeloid marker myeloperoxidase was not detected in the injected eyes. The chemokine KC mRNA increased 3–4 fold in eyes injected with either nanoparticles or saline at 1 day post-injection, but returned to control levels at 2 days post-injection. No elevation of KC protein was observed in these mice. The monocyte chemotactic protein-1, increased 3–4 fold at 1 day post-injection for both nanoparticle and saline injected eyes, but also returned to control levels at 2 days. No elevations of tumor necrosis factor alpha mRNA or protein were detected. These investigations show no signs of local inflammatory responses associated with subretinal injection of compacted DNA nanoparticles, indicating that the retina may be a suitable target for clinical nanoparticle-based interventions

    Oncolytic Measles Virotherapy and Opposition to Measles Vaccination

    Get PDF
    Recent measles epidemics in US and European cities where vaccination coverage has declined are providing a harsh reminder for the need to maintain protective levels of immunity across the entire population. Vaccine uptake rates have been declining in large part because of public misinformation regarding a possible association between measles vaccination and autism for which there is no scientific basis. The purpose of this article is to address a new misinformed antivaccination argument-that measles immunity is undesirable because measles virus is protective against cancer. Having worked for many years to develop engineered measles viruses as anticancer therapies, we have concluded (1) that measles is not protective against cancer and (2) that its potential utility as a cancer therapy will be enhanced, not diminished, by prior vaccination

    Genome-wide association study identifies multiple risk loci for renal cell carcinoma

    Get PDF
    Previous genome-wide association studies (GWAS) have identified six risk loci for renal cell carcinoma (RCC). We conducted a meta-analysis of two new scans of 5,198 cases and 7,331 controls together with four existing scans, totalling 10,784 cases and 20,406 controls of European ancestry. Twenty-four loci were tested in an additional 3,182 cases and 6,301 controls. We confirm the six known RCC risk loci and identify seven new loci at 1p32.3 (rs4381241, P=3.1 × 10−10), 3p22.1 (rs67311347, P=2.5 × 10−8), 3q26.2 (rs10936602, P=8.8 × 10−9), 8p21.3 (rs2241261, P=5.8 × 10−9), 10q24.33-q25.1 (rs11813268, P=3.9 × 10−8), 11q22.3 (rs74911261, P=2.1 × 10−10) and 14q24.2 (rs4903064, P=2.2 × 10−24). Expression quantitative trait analyses suggest plausible candidate genes at these regions that may contribute to RCC susceptibility

    Physiological roles for ecto-5’-nucleotidase (CD73)

    Get PDF
    Nucleotides and nucleosides influence nearly every aspect of physiology and pathophysiology. Extracellular nucleotides are metabolized through regulated phosphohydrolysis by a series of ecto-nucleotidases. The formation of extracellular adenosine from adenosine 5’-monophosphate is accomplished primarily through ecto-5’-nucleotidase (CD73), a glycosyl phosphatidylinositol-linked membrane protein found on the surface of a variety of cell types. Recent in vivo studies implicating CD73 in a number of tissue protective mechanisms have provided new insight into its regulation and function and have generated considerable interest. Here, we review contributions of CD73 to cell and tissue stress responses, with a particular emphasis on physiologic responses to regulated CD73 expression and function, as well as new findings utilizing Cd73-deficient animals

    Global gene expression profile progression in Gaucher disease mouse models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gaucher disease is caused by defective glucocerebrosidase activity and the consequent accumulation of glucosylceramide. The pathogenic pathways resulting from lipid laden macrophages (Gaucher cells) in visceral organs and their abnormal functions are obscure.</p> <p>Results</p> <p>To elucidate this pathogenic pathway, developmental global gene expression analyses were conducted in distinct <it>Gba1 </it>point-mutated mice (V394L/V394L and D409 V/null). About 0.9 to 3% of genes had altered expression patterns (≥ ± 1.8 fold change), representing several categories, but particularly macrophage activation and immune response genes. Time course analyses (12 to 28 wk) of INFγ-regulated pro-inflammatory (13) and IL-4-regulated anti-inflammatory (11) cytokine/mediator networks showed tissue differential profiles in the lung and liver of the <it>Gba1 </it>mutant mice, implying that the lipid-storage macrophages were not functionally inert. The time course alterations of the INFγ and IL-4 pathways were similar, but varied in degree in these tissues and with the <it>Gba1 </it>mutation.</p> <p>Conclusions</p> <p>Biochemical and pathological analyses demonstrated direct relationships between the degree of tissue glucosylceramides and the gene expression profile alterations. These analyses implicate IFNγ-regulated pro-inflammatory and IL-4-regulated anti-inflammatory networks in differential disease progression with implications for understanding the Gaucher disease course and pathophysiology.</p
    corecore