75 research outputs found

    Plan beta: Core or Cusp?

    Full text link
    The inner profile of Dark Matter (DM) halos remains one of the central problems in small-scale cosmology. At present, the problem can not be resolved in dwarf spheroidal galaxies due to a degeneracy between the DM profile and the velocity anisotropy beta of the stellar population. We discuss a method which can break the degeneracy by exploiting 3D positions and 1D line-of-sight (LOS) velocities. With the full 3D spatial information, we can determine precisely what fraction of each stars LOS motion is in the radial and tangential direction. This enables us to infer the anisotropy parameter beta directly from the data. The method is particularly effective if the galaxy is highly anisotropic. Finally, we argue that such a test could be applied to Sagittarius and potentially other dwarfs with RR Lyrae providing the necessary depth information.Comment: 10 pages, 3 figures Accepted in MNRAS. Extended introduction to match accepted version. Main conclusions unchange

    The black holes of radio galaxies during the "Quasar Era": Masses, accretion rates, and evolutionary stage

    Full text link
    We present an analysis of the AGN broad-line regions of 6 powerful radio galaxies at z>~2 (HzRGs) with rest-frame optical imaging spectroscopy obtained at the VLT. All galaxies have luminous (L(H-alpha)=few x 10^44 erg s^-1), spatially unresolved H-alpha line emission with FWHM>= 10,000 km s^-1 at the position of the nucleus, suggesting their AGN are powered by supermassive black holes with masses of few x 10^9 M_sun and accretion luminosities of a few percent of the Eddington luminosity. In two galaxies we also detect the BLRs in H-beta, suggesting relatively low extinction of A_V~1 mag, which agrees with constraints from X-ray observations. By relating black hole and bulge mass, we find a possible offset towards higher black-hole masses of at most ~0.6 dex relative to nearby galaxies at a given host mass, although each individual galaxy is within the scatter of the local relationship. If not entirely from systematic effects, this would then suggest that the masses of the host galaxies have increased by at most a factor ~4 since z~2 relative to the black-hole masses, perhaps through accretion of satellite galaxies or because of a time lag between star formation in the host galaxy and AGN fueling. We also compare the radiative and mechanical energy output (from jets) of our targets with predictions of recent models of "synthesis" or "grand unified" AGN feedback, which postulate that AGN with similar radiative and mechanical energy output rates to those found in our HzRGs may be nearing the end of their period of active growth. We discuss evidence that they may reach this stage at the same time as their host galaxies.Comment: A&A in pres

    Dense gas without star formation: The kpc-sized molecular disk in 3C326 N

    Get PDF
    We report the discovery of a 3 kpc disk of few 10^9 Ms of dense, warm H_2 in the nearby radio galaxy 3C326 N, which shows no signs of on-going or recent star formation and falls a factor 60 below the Schmidt-Kennicutt law. VLT/SINFONI imaging spectroscopy shows broad (FWHM \sim 500 km/s) ro-vibrational H_2 lines across all of the disk, with irregular profiles and line ratios consistent with shocks. The ratio of turbulent and gravitational energy suggests that the gas is highly turbulent and not gravitationally bound. In absence of the driving by the jet, short turbulent dissipation times suggest the gas should collapse rapidly and form stars, at odds with the recent star-formation history. Motivated by hydrodynamic models of rapid H_2 formation boosted by turbulent compression, we propose that the molecules formed from diffuse atomic gas in the turbulent jet cocoon. Since the gas is not self-gravitating, it cannot form molecular clouds or stars while the jet is active, and is likely to disperse and become atomic again after the nuclear activity ceases. We speculate that very low star-formation rates are to be expected under such conditions, provided that the large-scale turbulence sets the gas dynamics in molecular clouds. Our results illustrate that jets may create large molecular reservoirs as expected in 'positive feedback' scenarios of AGN-triggered star formation, but that this alone is not sufficient to trigger star formation.Comment: A&A accepte

    VLT/XSHOOTER and Subaru/MOIRCS spectroscopy of HUDF.YD3: no evidence for Lyman emission at z = 8.55

    Get PDF
    We present spectroscopic observations with VLT/XSHOOTER and Subaru/MOIRCS of a relatively bright Y-band drop-out galaxy in the Hubble Ultra Deep Field (HUDF), first selected by Bunker et al., McLure et al. and Bouwens et al. to be a likely z ≈ 8–9 galaxy on the basis of its colours in the Hubble Space Telescope (HST) Advanced Camera for Surveys and Wide Field Camera 3 images. This galaxy, HUDF.YD3 (also known as UDFy-38135539), has been targetted for VLT/SINFONI integral field spectroscopy by Lehnert et al., who published a candidate Lyman α emission line at z = 8.55 from this source. In our independent spectroscopy using two different infrared spectrographs (5 h with VLT/XSHOOTER and 11 h with Subaru/MOIRCS), we are unable to reproduce this line. We do not detect any emission line at the spectral and spatial location reported in Lehnert et al., despite the expected signal in our combined MOIRCS and XSHOOTER data being 5σ. The line emission also seems to be ruled out by the faintness of this object in recently extremely deep F105W (Y band) HST/WFC 3 imaging from HUDF12; the line would fall within this filter and such a galaxy should have been detected at YAB = 28.6 mag (∌20σ) rather than the marginal YAB ≈ 30 mag observed in the Y-band image, >3 times fainter than would be expected if the emission line was real. Hence, it appears highly unlikely that the reported Lyman α line emission at z > 8 is real, meaning that the highest redshift sources for which Lyman α emission has been seen are at z = 6.9-7.2. It is conceivable that Lyman α does not escape galaxies at higher redshifts, where the Gunn–Peterson absorption renders the Universe optically thick to this line. However, deeper spectroscopy on a larger sample of candidate z > 7 galaxies will be needed to test this

    An H-alpha survey aiming at the detection of extraplanar diffuse ionized gas in halos of edge-on spiral galaxies II. The H-alpha survey atlas and catalog

    Full text link
    In this second paper on the investigation of extraplanar diffuse ionized gas in nearby edge-on spiral galaxies we present the actual results of the individual galaxies of our H-alpha imaging survey. A grand total of 74 galaxies have been studied, including the 9 galaxies of a recently studied sub-sample (Rossa & Dettmar 2000). 40.5% of all studied galaxies reveal extraplanar diffuse ionized gas, whereas in 59.5% of the survey galaxies no extraplanar diffuse ionized gas could be detected. The average distances of this extended emission above the galactic midplane range from 1-2 kpc, while individual filaments in a few galaxies reach distances of up to |z| ~ 6 kpc. In several cases a pervasive layer of ionized gas was detected, similar to the Reynolds layer in our Milky Way, while other galaxies reveal only extended emission locally. The morphology of the diffuse ionized gas is discussed for each galaxy and is compared with observations of other important ISM constituents in the context of the disk-halo connection, in those cases where published results were available. Furthermore, we present the distribution of extraplanar dust in these galaxies, based on an analysis of the unsharp-masked R-band images. The results are compared with the distribution of the diffuse ionized gas.Comment: LaTeX, 21 pages, 7 figures, accepted for publication in A&A, figs. 22-54 are only available in electronic form and figs. 2-11 + 17-20 are also available at http://www.astro.rub.de/jrossa/ha-surve

    An OSIRIS study of the gas kinematics in a sample of UV-selected galaxies: Evidence of "Hot and Bothered" starbursts in the local Universe

    Get PDF
    We present data from Integral Field Spectroscopy for 3 supercompact UV-Luminous Galaxies (ScUVLGs). As nearby (z~0.2), compact (R_50~1-2 kpc), bright Paschen-alpha sources, with unusually high star formation rates (SFR=3-100 M_sun/yr), ScUVLGs are an ideal population for studying detailed kinematics and dynamics in actively star-forming galaxies. In addition, ScUVLGs appear to be excellent analogs to high redshift Lyman Break Galaxies (LBGs) and our results may offer additional insight into the dynamics of LBGs. Previous work by our team has shown that the morphologies of these galaxies exhibit tidal features and companions, and in this study we find that the dynamics of ScUVLGs are dominated by disturbed kinematics of the emission line gas-- suggestive that these galaxies have undergone recent feedback, interactions or mergers. While 2 of the 3 galaxies do display rotation, v/sigma < 1 -- suggesting dispersion dominated kinematics rather than smooth rotation. We also simulate how these observations would appear at z~2. Lower resolution and loss of low surface brightness features causes some apparent discrepancies between the low-z (observed) and high-z (simulated) interpretations and quantitatively gives different values for v/sigma, yet simulations of these low-z analogs manage to detect the brightest regions well and resemble actual high-z observations of LBGs.Comment: 4 pages, 4 figures (bitmapped), accepted for publication in ApJ

    Experimental Constraint on Axionlike Particles over Seven Orders of Magnitude in Mass

    Get PDF
    We use our recent electric dipole moment (EDM) measurement data to constrain the possibility that the HfF+ EDM oscillates in time due to interactions with candidate dark matter axionlike particles (ALPs). We employ a Bayesian analysis method which accounts for both the look-elsewhere effect and the uncertainties associated with stochastic density fluctuations in the ALP field. We find no evidence of an oscillating EDM over a range spanning from 27 nHz to 400 mHz, and we use this result to constrain the ALP-gluon coupling over the mass range 10-22-10-15 eV. This is the first laboratory constraint on the ALP-gluon coupling in the 10-17-10-15 eV range, and the first laboratory constraint to properly account for the stochastic nature of the ALP field
    • 

    corecore