5,633 research outputs found
Data-efficient Neuroevolution with Kernel-Based Surrogate Models
Surrogate-assistance approaches have long been used in computationally
expensive domains to improve the data-efficiency of optimization algorithms.
Neuroevolution, however, has so far resisted the application of these
techniques because it requires the surrogate model to make fitness predictions
based on variable topologies, instead of a vector of parameters. Our main
insight is that we can sidestep this problem by using kernel-based surrogate
models, which require only the definition of a distance measure between
individuals. Our second insight is that the well-established Neuroevolution of
Augmenting Topologies (NEAT) algorithm provides a computationally efficient
distance measure between dissimilar networks in the form of "compatibility
distance", initially designed to maintain topological diversity. Combining
these two ideas, we introduce a surrogate-assisted neuroevolution algorithm
that combines NEAT and a surrogate model built using a compatibility distance
kernel. We demonstrate the data-efficiency of this new algorithm on the low
dimensional cart-pole swing-up problem, as well as the higher dimensional
half-cheetah running task. In both tasks the surrogate-assisted variant
achieves the same or better results with several times fewer function
evaluations as the original NEAT.Comment: In GECCO 201
Novelty Search in Competitive Coevolution
One of the main motivations for the use of competitive coevolution systems is
their ability to capitalise on arms races between competing species to evolve
increasingly sophisticated solutions. Such arms races can, however, be hard to
sustain, and it has been shown that the competing species often converge
prematurely to certain classes of behaviours. In this paper, we investigate if
and how novelty search, an evolutionary technique driven by behavioural
novelty, can overcome convergence in coevolution. We propose three methods for
applying novelty search to coevolutionary systems with two species: (i) score
both populations according to behavioural novelty; (ii) score one population
according to novelty, and the other according to fitness; and (iii) score both
populations with a combination of novelty and fitness. We evaluate the methods
in a predator-prey pursuit task. Our results show that novelty-based approaches
can evolve a significantly more diverse set of solutions, when compared to
traditional fitness-based coevolution.Comment: To appear in 13th International Conference on Parallel Problem
Solving from Nature (PPSN 2014
Edge theories in Projected Entangled Pair State models
We study the edge physics of gapped quantum systems in the framework of
Projected Entangled Pair State (PEPS) models. We show that the effective
low-energy model for any region acts on the entanglement degrees of freedom at
the boundary, corresponding to physical excitations located at the edge. This
allows us to determine the edge Hamiltonian in the vicinity of PEPS models, and
we demonstrate that by choosing the appropriate bulk perturbation, the edge
Hamiltonian can exhibit a rich phase diagram and phase transitions. While for
models in the trivial phase any Hamiltonian can be realized at the edge, we
show that for topological models, the edge Hamiltonian is constrained by the
topological order in the bulk which can e.g. protect a ferromagnetic Ising
chain at the edge against spontaneous symmetry breaking.Comment: 5 pages, 4 figure
Dynamical tunneling in mushroom billiards
We study the fundamental question of dynamical tunneling in generic
two-dimensional Hamiltonian systems by considering regular-to-chaotic tunneling
rates. Experimentally, we use microwave spectra to investigate a mushroom
billiard with adjustable foot height. Numerically, we obtain tunneling rates
from high precision eigenvalues using the improved method of particular
solutions. Analytically, a prediction is given by extending an approach using a
fictitious integrable system to billiards. In contrast to previous approaches
for billiards, we find agreement with experimental and numerical data without
any free parameter.Comment: 4 pages, 4 figure
Achenbach syndrome as a rare cause of painful, blue finger
Paroxysmal finger hematoma, also known as Achenbach syndrome, is an underdiagnosed condition that causes apprehension in patients owing to the alarming appearance. It usually presents as a blue-purple discoloration of the volar aspect of one or more digits and can be associated with pain and paresthesia. This condition is benign and is usually self-limiting
Development of improved semi-organic structural adhesives for elevated temperature applications Technical summary report, 1 ~JUL. 1964 - 29 ~FEB. 1968
Titanium chelate polymer adhesive formulation for aluminum joint curing in high temperature application
Petalz: Search-based Procedural Content Generation for the Casual Gamer
The impact of game content on the player experience is potentially more critical in casual games than in competitive games because of the diminished role of strategic or tactical diversions. Interestingly, until now procedural content generation (PCG) has nevertheless been investigated almost exclusively in the context of competitive, skills-based gaming. This paper therefore opens a new direction for PCG by placing it at the center of an entirely casual flower-breeding game platform called Petalz. That way, the behavior of players and their reactions to different game mechanics in a casual environment driven by PCG can be investigated. In particular, players in Petalz can (1) trade their discoveries in a global marketplace, (2) respond to an incentive system that awards diversity, and (3) generate real-world threedimensional replicas of their evolved flowers. With over 1,900 registered online users and 38,646 unique evolved flowers, Petalz showcases the potential for PCG to enable these kinds of casual game mechanics, thus paving the way for continued innovation with PCG in casual gaming
A STOL airworthiness investigation using a simulation of an augmentor wing transport. Volume 2: Simulation data and analysis
A simulator study of STOL airworthiness was conducted using a model of an augmentor wing transport. The approach, flare and landing, go-around, and takeoff phases of flight were investigated. The simulation and the data obtained are described. These data include performance measures, pilot commentary, and pilot ratings. A pilot/vehicle analysis of glide slope tracking and of the flare maneuver is included
Transport properties of anyons in random topological environments
The quasi one-dimensional transport of Abelian and non-Abelian anyons is
studied in the presence of a random topological background. In particular, we
consider the quantum walk of an anyon that braids around islands of randomly
filled static anyons of the same type. Two distinct behaviours are identified.
We analytically demonstrate that all types of Abelian anyons localise purely
due to the statistical phases induced by their random anyonic environment. In
contrast, we numerically show that non-Abelian Ising anyons do not localise.
This is due to their entanglement with the anyonic environment that effectively
induces dephasing. Our study demonstrates that localisation properties strongly
depend on non-local topological interactions and it provides a clear
distinction in the transport properties of Abelian and non-Abelian statistics.Comment: 9 pages, 5 figure
- …