1,852 research outputs found

    An electronic nose in the discrimination of patients with asthma and controls.

    Get PDF
    BACKGROUND: Exhaled breath contains thousands of volatile organic compounds (VOCs) that could serve as biomarkers of lung disease. Electronic noses can distinguish VOC mixtures by pattern recognition. OBJECTIVE: We hypothesized that an electronic nose can discriminate exhaled air of patients with asthma from healthy controls, and between patients with different disease severities. METHODS: Ten young patients with mild asthma (25.1 +/- 5.9 years; FEV(1), 99.9 +/- 7.7% predicted), 10 young controls (26.8 +/- 6.4 years; FEV(1), 101.9 +/- 10.3), 10 older patients with severe asthma (49.5 +/- 12.0 years; FEV(1), 62.3 +/- 23.6), and 10 older controls (57.3 +/- 7.1 years; FEV(1), 108.3 +/- 14.7) joined a cross-sectional study with duplicate sampling of exhaled breath with an interval of 2 to 5 minutes. Subjects inspired VOC-filtered air by tidal breathing for 5 minutes, and a single expiratory vital capacity was collected into a Tedlar bag that was sampled by electronic nose (Cyranose 320) within 10 minutes. Smellprints were analyzed by linear discriminant analysis on principal component reduction. Cross-validation values (CVVs) were calculated. RESULTS: Smellprints of patients with mild asthma were fully separated from young controls (CVV, 100%; Mahalanobis distance [M-distance], 5.32), and patients with severe asthma could be distinguished from old controls (CVV, 90%; M-distance, 2.77). Patients with mild and severe asthma could be less well discriminated (CVV, 65%; M-distance, 1.23), whereas the 2 control groups were indistinguishable (CVV, 50%; M-distance, 1.56). The duplicate samples replicated these results. CONCLUSION: An electronic nose can discriminate exhaled breath of patients with asthma from controls but is less accurate in distinguishing asthma severities. CLINICAL IMPLICATION: These findings warrant validation of electronic noses in diagnosing newly presented patients with asthma

    Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector

    Get PDF
    Background: Regulator of G-protein signaling (RGS) proteins have been well-described as accelerators of Ga-mediated GTP hydrolysis (‘‘GTPase-accelerating proteins’’ or GAPs). However, RGS proteins with complex domain architectures are now known to regulate much more than Ga GTPase activity. RGS14 contains tandem Ras-binding domains that have been reported to bind to Rap- but not Ras GTPases in vitro, leading to the suggestion that RGS14 is a Rap-specific effector. However, more recent data from mammals and Drosophila imply that, in vivo, RGS14 may instead be an effector of Ras.Methodology/Principal Findings: Full-length and truncated forms of purified RGS14 protein were found to bind indiscriminately in vitro to both Rap- and Ras-family GTPases, consistent with prior literature reports. In stark contrast, however, we found that in a cellular context RGS14 selectively binds to activated H-Ras and not to Rap isoforms. Co- transfection / co-immunoprecipitation experiments demonstrated the ability of full-length RGS14 to assemble a multiprotein complex with components of the ERK MAPK pathway in a manner dependent on activated H-Ras. Small interfering RNA-mediated knockdown of RGS14 inhibited both nerve growth factor- and basic fibrobast growth factor- mediated neuronal differentiation of PC12 cells, a process which is known to be dependent on Ras-ERK signaling.Conclusions/Significance: In cells, RGS14 facilitates the formation of a selective Ras?GTP-Raf-MEK-ERK multiprotein complex to promote sustained ERK activation and regulate H-Ras-dependent neuritogenesis. This cellular function for RGS14 is similar but distinct from that recently described for its closely-related paralogue, RGS12, which shares the tandem Ras- binding domain architecture with RGS14

    Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation

    Get PDF
    The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9-39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B

    Multisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulation

    Full text link
    A necessary requirement for multisensory integration is the convergence of pathways from different senses. The dorsal cochlear nucleus (DCN) receives auditory input directly via the VIIIth nerve and somatosensory input indirectly from the Vth nerve via granule cells. Multisensory integration may occur in DCN cells that receive both trigeminal and auditory nerve input, such as the fusiform cell. We investigated trigeminal system influences on guinea pig DCN cells by stimulating the trigeminal ganglion while recording spontaneous and sound-driven activity from DCN neurons. A bipolar stimulating electrode was placed into the trigeminal ganglion of anesthetized guinea pigs using stereotaxic co-ordinates. Electrical stimuli were applied as bipolar pulses (100 s per phase) with amplitudes ranging from 10 to 100 A. Responses from DCN units were obtained using a 16-channel, four-shank electrode. Current pulses were presented alone or preceding 100- or 200-ms broadband noise (BBN) bursts. Thirty percent of DCN units showed either excitatory, inhibitory or excitatory inhibitory responses to trigeminal ganglion stimulation. When paired with BBN stimulation, trigeminal stimulation suppressed or facilitated the firing rate in response to BBN in 78% of units, reflecting multisensory integration. Pulses preceding the acoustic stimuli by as much as 95 ms were able to alter responses to BBN. Bimodal suppression may play a role in attenuating body-generated sounds, such as vocalization or respiration, whereas bimodal enhancement may serve to direct attention in low signal-to-noise environments.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72293/1/j.1460-9568.2005.04142.x.pd

    The ACER pollen and charcoal database: A global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Get PDF
    This is the final version of the article. Available from Copernicus Publications via the DOI in this record.Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15ka) with a temporal resolution better than 1000years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U/230Th, optically stimulated luminescence (OSL), 40Ar/39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft Access™ at https://doi.org/10.1594/PANGAEA.870867.The members of the ACER project wish to thank the QUEST-DESIRE (UK and France) bilateral project, the INQUA International Focus Group ACER and the INTIMATE-COST action for funding a suite of workshops to compile the ACER pollen and charcoal database and the workshop on ACER chronology that allow setting the basis for harmonizing the chronologies. Josué M. Polanco-Martinez was funded by a Basque Government postdoctoral fellowship (POS_2015_1_0006) and Sandy P. Harrison by the ERC Advanced Grant GC2.0: unlocking the past for a clearer future

    Metabolic phenotype of methylmalonic acidemia in mice and humans: the role of skeletal muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in methylmalonyl-CoA mutase cause methylmalonic acidemia, a common organic aciduria. Current treatment regimens rely on dietary management and, in severely affected patients, liver or combined liver-kidney transplantation. For undetermined reasons, transplantation does not correct the biochemical phenotype.</p> <p>Methods</p> <p>To study the metabolic disturbances seen in this disorder, we have created a murine model with a null allele at the methylmalonyl-CoA mutase locus and correlated the results observed in the knock-out mice to patient data. To gain insight into the origin and magnitude of methylmalonic acid (MMA) production in humans with methylmalonyl-CoA mutase deficiency, we evaluated two methylmalonic acidemia patients who had received different variants of combined liver-kidney transplants, one with a complete liver replacement-kidney transplant and the other with an auxiliary liver graft-kidney transplant, and compared their metabolite production to four untransplanted patients with intact renal function.</p> <p>Results</p> <p>Enzymatic, Western and Northern analyses demonstrated that the targeted allele was null and correctable by lentiviral complementation. Metabolite studies defined the magnitude and tempo of plasma MMA concentrations in the mice. Before a fatal metabolic crisis developed in the first 24–48 hours, the methylmalonic acid content per gram wet-weight was massively elevated in the skeletal muscle as well as the kidneys, liver and brain. Near the end of life, extreme elevations in tissue MMA were present primarily in the liver. The transplant patients studied when well and on dietary therapy, displayed massive elevations of MMA in the plasma and urine, comparable to the levels seen in the untransplanted patients with similar enzymatic phenotypes and dietary regimens.</p> <p>Conclusion</p> <p>The combined observations from the murine metabolite studies and patient investigations indicate that during homeostasis, a large portion of circulating MMA has an extra-heptorenal origin and likely derives from the skeletal muscle. Our studies suggest that modulating skeletal muscle metabolism may represent a strategy to increase metabolic capacity in methylmalonic acidemia as well as other organic acidurias. This mouse model will be useful for further investigations exploring disease mechanisms and therapeutic interventions in methylmalonic acidemia, a devastating disorder of intermediary metabolism.</p
    • …
    corecore