125 research outputs found

    Gravitational detection of a low-mass dark satellite at cosmological distance

    Full text link
    The mass-function of dwarf satellite galaxies that are observed around Local Group galaxies substantially differs from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at z = 0.222 was recently found using a new method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a 1.9 +/- 0.1 x 10^8 M_sun dark satellite in the Einstein-ring system JVAS B1938+666 at z = 0.881, where M_sun denotes solar mass. This satellite galaxy has a mass similar to the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be alpha = 1.1^+0.6_-0.4, with an average mass-fraction of f = 3.3^+3.6_-1.8 %, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.Comment: 25 pages, 7 figures, accepted for publication in Nature (19 January 2012

    Revisiting the Cosmic Star Formation History: Caution on the Uncertainties in Dust Correction and Star Formation Rate Conversion

    Full text link
    The cosmic star formation rate density (CSFRD) has been observationally investigated out to redshift z~10. However, most of theoretical models for galaxy formation underpredict the CSFRD at z>1. Since the theoretical models reproduce the observed luminosity functions (LFs), luminosity densities (LDs), and stellar mass density at each redshift, this inconsistency does not simply imply that theoretical models should incorporate some missing unknown physical processes in galaxy formation. Here, we examine the cause of this inconsistency in UV wavelengths by using a mock catalog of galaxies generated by a semi-analytic model of galaxy formation. We find that this inconsistency is due to two observational uncertainties: dust obscuration correction and conversion from UV luminosity to star formation rate (SFR). The methods for correction of obscuration and SFR conversion used in observational studies result in the overestimation of CSFRD by ~ 0.1-0.3 dex and ~ 0.1-0.2 dex, respectively, compared to the results obtained directly from our mock catalog. We present new empirical calibrations for dust attenuation and conversion from observed UV LFs and LDs into CSFRD.Comment: 12 pages including 11 figures. matches the published version (ApJ 2013 Jan. 20 issue

    Velocity-dependent J-factors for annihilation radiation from cosmological simulations

    Get PDF
    We determine the dark matter pair-wise relative velocity distribution in a set of Milky Way-like halos in the Auriga and APOSTLE simulations. Focusing on the smooth halo component, the relative velocity distribution is well-described by a Maxwell-Boltzmann distribution over nearly all radii in the halo. We explore the implications for velocity-dependent dark matter annihilation, focusing on four models which scale as different powers of the relative velocity: Sommerfeld, s-wave, p-wave, and d-wave models. We show that the J-factors scale as the moments of the relative velocity distribution, and that the halo-to-halo scatter is largest for d-wave, and smallest for Sommerfeld models. The J-factor is strongly correlated with the dark matter density in the halo, and is very weakly correlated with the velocity dispersion. This implies that if the dark matter density in the Milky Way can be robustly determined, one can accurately predict the dark matter annihilation signal, without the need to identify the dark matter velocity distribution in the Galaxy

    Loop-induced photon spectral lines from neutralino annihilation in the NMSSM

    Full text link
    We have computed the loop-induced processes of neutralino annihilation into two photons and, for the first time, into a photon and a Z boson in the framework of the NMSSM. The photons produced from these radiative modes are monochromatic and possess a clear "smoking gun" experimental signature. This numerical analysis has been done with the help of the SloopS code, initially developed for automatic one-loop calculation in the MSSM. We have computed the rates for different benchmark points coming from SUGRA and GMSB soft SUSY breaking scenarios and compared them with the MSSM. We comment on how this signal can be enhanced, with respect to the MSSM, especially in the low mass region of the neutralino. We also discuss the possibility of this observable to constrain the NMSSM parameter space, taking into account the latest limits from the FERMI collaboration on these two modes.Comment: 18 pages, 3 figures. Minor clarifications added in the text. Typing mistakes and references corrected. Matches published versio

    Challenges of Profile Likelihood Evaluation in Multi-Dimensional SUSY Scans

    Get PDF
    Statistical inference of the fundamental parameters of supersymmetric theories is a challenging and active endeavor. Several sophisticated algorithms have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and nested sampling techniques are geared towards Bayesian inference, they have also been used to estimate frequentist confidence intervals based on the profile likelihood ratio. We investigate the performance and appropriate configuration of MultiNest, a nested sampling based algorithm, when used for profile likelihood-based analyses both on toy models and on the parameter space of the Constrained MSSM. We find that while the standard configuration is appropriate for an accurate reconstruction of the Bayesian posterior, the profile likelihood is poorly approximated. We identify a more appropriate MultiNest configuration for profile likelihood analyses, which gives an excellent exploration of the profile likelihood (albeit at a larger computational cost), including the identification of the global maximum likelihood value. We conclude that with the appropriate configuration MultiNest is a suitable tool for profile likelihood studies, indicating previous claims to the contrary are not well founded.Comment: 21 pages, 9 figures, 1 table; minor changes following referee report. Matches version accepted by JHE

    The moment of truth for WIMP Dark Matter

    Full text link
    We know that dark matter constitutes 85% of all the matter in the Universe, but we do not know of what it is made. Amongst the many Dark Matter candidates proposed, WIMPs (weakly interacting massive particles) occupy a special place, as they arise naturally from well motivated extensions of the standard model of particle physics. With the advent of the Large Hadron Collider at CERN, and a new generation of astroparticle experiments, the moment of truth has come for WIMPs: either we will discover them in the next five to ten years, or we will witness the inevitable decline of WIMP paradigm.Comment: To appear in Nature (Nov 18, 2010

    Probing EWSB Naturalness in Unified SUSY Models with Dark Matter

    Full text link
    We have studied Electroweak Symmetry Breaking (EWSB) fine-tuning in the context of two unified Supersymmetry scenarios: the Constrained Minimal Supersymmetric Model (CMSSM) and models with Non-Universal Higgs Masses (NUHM), in light of current and upcoming direct detection dark matter experiments. We consider both those models that satisfy a one-sided bound on the relic density of neutralinos, Ωχh2<0.12\Omega_{\chi} h^2 < 0.12, and also the subset that satisfy the two-sided bound in which the relic density is within the 2 sigma best fit of WMAP7 + BAO + H0 data. We find that current direct detection searches for dark matter probe the least fine-tuned regions of parameter-space, or equivalently those of lowest Higgs mass parameter μ\mu, and will tend to probe progressively more and more fine-tuned models, though the trend is more pronounced in the CMSSM than in the NUHM. Additionally, we examine several subsets of model points, categorized by common mass hierarchies; M_{\chi_0} \sim M_{\chi^\pm}, M_{\chi_0} \sim M_{\stau}, M_{\chi_0} \sim M_{\stop_1}, the light and heavy Higgs poles, and any additional models classified as "other"; the relevance of these mass hierarchies is their connection to the preferred neutralino annihilation channel that determines the relic abundance. For each of these subsets of models we investigated the degree of fine-tuning and discoverability in current and next generation direct detection experiments.Comment: 26 pages, 10 figures. v2: references added. v3: matches published versio

    Very deep spectroscopy of the Coma cluster line of sight: exploring new territories

    Full text link
    Environmental effects have an important influence on cluster galaxies, but studies at very faint magnitudes (R>21) are almost exclusively based on imaging. We present here a very deep spectroscopic survey of galaxies on the line of sight to Coma, based on redshifts obtained with VLT/VIMOS for 715 galaxies in the unprecedented magnitude range 21<R<23 (absolute magnitude -14 to -12). We confirm the substructures previously identified in Coma by Adami et al. (2005a), and identify three new ones. We detect many groups behind Coma: a large structure at z~0.5, the SDSS Great Wall, and a large and very young structure at z~0.054. These structures account for the mass maps derived from a recent weak lensing analysis by Gavazzi et al. (2009). The orbits of dwarf galaxies are probably anisotropic and radial, and could originate from field galaxies radially falling into the cluster. Spectral characteristics of Coma dwarf galaxies show that red or absorption line galaxies have larger stellar masses and are older than blue or emission line galaxies. R<22 galaxies show less prominent absorption lines than R>22 galaxies. This trend is less clear for field galaxies, suggesting that part of the faint Coma galaxies could have been recently injected from the field following the NGC 4911 group infall. We present a list of five Ultra Compact Dwarf galaxy candidates. We also globally confirm spectroscopically our previous results on the galaxy luminosity functions and find that dwarf galaxies follow a red sequence similar to that drawn by bright galaxies. Dwarf galaxies are very abundant in Coma, and are partly field galaxies that have fallen onto the cluster along filaments.Comment: Accepted for publication in Astronomy & Astrophysic

    The velocity anisotropy of the Milky Way satellite system

    Get PDF
    We analyse the orbital kinematics of the Milky Way (MW) satellite system utilizing the latest systemic proper motions for 38 satellites based on data from Gaia Data Release 2. Combining these data with distance and line-of-sight velocity measurements from the literature, we use a likelihood method to model the velocity anisotropy, β, as a function of Galactocentric distance and compare the MW satellite system with those of simulated MW-mass haloes from the APOSTLE (A Project Of Simulating The Local Environment) and Auriga simulation suites. The anisotropy profile for the MW satellite system increases from β ∼-2 at r∼20 kpc to β ∼0.5 at r∼200 kpc, indicating that satellites closer to the Galactic centre have tangentially biased motions while those farther out have radially biased motions. The motions of satellites around APOSTLE host galaxies are nearly isotropic at all radii, while the β(r) profiles for satellite systems in the Auriga suite, whose host galaxies are substantially more massive in baryons than those inAPOSTLE, aremore consistent with that of theMWsatellite system. This shape of the β(r) profile may be attributed to the central stellar disc preferentially destroying satellites on radial orbits, or intrinsic processes from the formation of the MW system

    Clumps and streams in the local dark matter distribution

    Full text link
    In cold dark matter cosmological models, structures form and grow by merging of smaller units. Numerical simulations have shown that such merging is incomplete; the inner cores of halos survive and orbit as "subhalos" within their hosts. Here we report a simulation that resolves such substructure even in the very inner regions of the Galactic halo. We find hundreds of very concentrated dark matter clumps surviving near the solar circle, as well as numerous cold streams. The simulation reveals the fractal nature of dark matter clustering: Isolated halos and subhalos contain the same relative amount of substructure and both have cuspy inner density profiles. The inner mass and phase-space densities of subhalos match those of recently discovered faint, dark matter-dominated dwarf satellite galaxies and the overall amount of substructure can explain the anomalous flux ratios seen in strong gravitational lenses. Subhalos boost gamma-ray production from dark matter annihilation, by factors of 4-15, relative to smooth galactic models. Local cosmic ray production is also enhanced, typically by a factor 1.4, but by more than a factor of ten in one percent of locations lying sufficiently close to a large subhalo. These estimates assume that gravitational effects of baryons on dark matter substructure are small.Comment: 14 pages, 5 figures, to appear in Nature, includes supplementary information. Full version of Figure 1 available at http://www.ucolick.org/~diemand/vl2/fig1.pn
    corecore