15,327 research outputs found

    Varroa destructor reproduction and cell re-capping in mite-resistant Apis mellifera populations

    Get PDF
    Globalization has facilitated the spread of emerging pests such as the Varroa destructor mite, resulting in the near global distribution of the pest. In South African and Brazilian honey bees, mite-resistant colonies appeared within a decade; in Europe, mite-resistant colonies are rare, but several of these exhibited high levels of “re-capping” behavior. We studied re-capping in Varroa-naïve (UK/Australia) and Varroa-resistant (South Africa and Brazil) populations and found very low and very high levels, respectively, with the resistant populations targeting mite-infested cells. Furthermore, 54% of artificially infested A. m. capensis worker cells were removed after 10 days and 83% of the remaining infested cells were re-capped. Such targeted re-capping of drone cells did not occur. We propose that cell opening is a fundamental trait in mite-resistant populations and that re-capping is an accurate proxy for this behavior

    Parallel Sparse Matrix Solver on the GPU Applied to Simulation of Electrical Machines

    Get PDF
    Nowadays, several industrial applications are being ported to parallel architectures. In fact, these platforms allow acquire more performance for system modelling and simulation. In the electric machines area, there are many problems which need speed-up on their solution. This paper examines the parallelism of sparse matrix solver on the graphics processors. More specifically, we implement the conjugate gradient technique with input matrix stored in CSR, and Symmetric CSR and CSC formats. This method is one of the most efficient iterative methods available for solving the finite-element basis functions of Maxwell's equations. The GPU (Graphics Processing Unit), which is used for its implementation, provides mechanisms to parallel the algorithm. Thus, it increases significantly the computation speed in relation to serial code on CPU based systems

    Development of Partial Least Square models for the prediction of the concentration of a gustative stimulus in water from physiological data

    Get PDF
    International audienceClassical physicochemical or sensory methodologies are often inadequate to describe the perception of water and their correlation is complicated. Indeed, the taste of water is difficult to describe due to low concentrations of sapid molecules. The aim of this work was to combine sensory and physiological measurements in order to correlate data with chemical properties of sapid solutions

    Quantitative Proteomic Analysis Reveals Changes in the Benchmark Corynebacterium pseudotuberculosis Biovar Equi Exoproteome after Passage in a Murine Host

    Get PDF
    Corynebacterium pseudotuberculosis biovar equi is the etiologic agent of ulcerative lymphangitis. To investigate proteins that could be related to the virulence of this pathogen, we combined an experimental passage process using a murine model and high-throughput proteomics with a mass spectrometry, data-independent acquisition (LC-MSE) approach to identify and quantify the proteins released into the supernatants of strain 258_equi. To our knowledge, this approach allowed characterization of the exoproteome of a C. pseudotuberculosis equi strain for the first time. Interestingly, the recovery of this strain from infected mouse spleens induced a change in its virulence potential, and it became more virulent in a second infection challenge. Proteomic screening performed from culture supernatant of the control and recovered conditions revealed 104 proteins that were differentially expressed between the two conditions. In this context, proteomic analysis of the recovered condition detected the induction of proteins involved in bacterial pathogenesis, mainly related to iron uptake. In addition, KEGG enrichment analysis showed that ABC transporters, bacterial secretion systems and protein export pathways were significantly altered in the recovered condition. These findings show that secretion and secreted proteins are key elements in the virulence and adaptation of C. pseudotuberculosis. Collectively, bacterial pathogenesis-related proteins were identified that contribute to the processes of adherence, intracellular growth and evasion of the immune system. Moreover, this study enhances our understanding of the factors that may influence the pathogenesis of C. pseudotuberculosis.Fil: Marques Da Silva, Wanderson. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; Brasil. Institut National de la Recherche Agronomique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carvalho, Rodrigo D. De Oliveira. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; BrasilFil: Dorella, Fernanda A.. Universidade Federal de Minas Gerais; BrasilFil: Folador, Edson L.. Universidade Federal da Paraíba. Centro de Biotecnologia; BrasilFil: Souza, Gustavo H. M. F.. Waters Corporation; BrasilFil: Pimenta, Adriano M. C.. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; BrasilFil: Figueiredo, Henrique C. P.. Universidade Federal de Minas Gerais; BrasilFil: Le Loir, Yves. Institut National de la Recherche Agronomique; FranciaFil: Silva, Artur. Universidade Federal do Pará; BrasilFil: Azevedo, Vasco. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; Brasi

    Simulations of extensional flow in microrheometric devices

    Get PDF
    We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels

    Peer-to-Peer and Mass Communication Effect on Revolution Dynamics

    Full text link
    Revolution dynamics is studied through a minimal Ising model with three main influences (fields): personal conservatism (power-law distributed), inter-personal and group pressure, and a global field incorporating peer-to-peer and mass communications, which is generated bottom-up from the revolutionary faction. A rich phase diagram appears separating possible terminal stages of the revolution, characterizing failure phases by the features of the individuals who had joined the revolution. An exhaustive solution of the model is produced, allowing predictions to be made on the revolution's outcome

    QUASI-FERMI-LEVELS IN QUANTUM-WELL PHOTOLUMINESCENCE

    Get PDF
    The nonequilibrium quasi-Fermi-levels of electrons and holes in quantum wells are calculated during photoluminescence. It is assumed the electrons and holes are created by continuous laser excitation. Various recombination processes are included: electron radiative recombination with holes bound at neutral acceptors, electron radiative recombination with free holes, hole trapping at ionized acceptors, and Auger decay. A numerical example is presented for acceptors in GaAs/Ga(1-x)Al(x)As quantum wells.4473150315

    RADIATIVE LIFETIMES, QUASI-FERMI-LEVELS, AND CARRIER DENSITIES IN GAAS-(GA,AL)AS QUANTUM-WELL PHOTOLUMINESCENCE UNDER STEADY-STATE EXCITATION CONDITIONS

    Get PDF
    A quantum-mechanical calculation of the carrier densities, electron and hole quasi-Fermi-levels and various radiative decay times in GaAs-(Ga,Al)As quantum wells is performed, under steady-state excitation conditions, as functions of the cw laser intensity, temperature, well widths, and acceptor distribution in the well. We consider the radiative recombination of electrons with flee holes and with holes bound at neutral accepters. Our calculations-which have no free parameters-are in quantitative agreement in the intermediate laser-intensity regime at T = 300 K with the results by Ding et al. [Appl. Phys. Lett. 60, 2051 (1992)], who obtained the carrier density for multiple asymmetric coupled quantum wells through a fitting procedure that reproduced the total experimental photoluminescence intensity. Results for the carrier-dependent e-h recombination decay time are in good agreement with experimental tal data by Bongiovanni and Staehli [Phys. Rev. B 46, 9861 (1992)].4820150921510
    corecore