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Corynebacterium pseudotuberculosis biovar equi is the etiologic agent of ulcerative

lymphangitis. To investigate proteins that could be related to the virulence of this

pathogen, we combined an experimental passage process using a murine model and

high-throughput proteomics with a mass spectrometry, data-independent acquisition

(LC-MSE) approach to identify and quantify the proteins released into the supernatants

of strain 258_equi. To our knowledge, this approach allowed characterization of the

exoproteome of a C. pseudotuberculosis equi strain for the first time. Interestingly,

the recovery of this strain from infected mouse spleens induced a change in its

virulence potential, and it became more virulent in a second infection challenge.

Proteomic screening performed from culture supernatant of the control and recovered

conditions revealed 104 proteins that were differentially expressed between the two

conditions. In this context, proteomic analysis of the recovered condition detected

the induction of proteins involved in bacterial pathogenesis, mainly related to iron

uptake. In addition, KEGG enrichment analysis showed that ABC transporters, bacterial

secretion systems and protein export pathways were significantly altered in the

recovered condition. These findings show that secretion and secreted proteins are

key elements in the virulence and adaptation of C. pseudotuberculosis. Collectively,

bacterial pathogenesis-related proteins were identified that contribute to the processes

of adherence, intracellular growth and evasion of the immune system. Moreover, this

study enhances our understanding of the factors that may influence the pathogenesis of

C. pseudotuberculosis.
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INTRODUCTION

Corynebacterium pseudotuberculosis is a gram-positive,
facultative intracellular pathogen that is globally distributed and
can infect horses, cattle, sheep, goats, buffalos, and occasionally
humans. C. pseudotuberculosis biovar ovis is the etiologic agent
of caseous lymphadenitis in small ruminants (Dorella et al.,
2006). Corynebacterium pseudotuberculosis strains belonging to
biovar equi, however, cause edematous skin illness in buffalos.
In horses, the infection can manifest through one of two forms:
(i) externally, which usually presents with chronic ventral and
pectoral lymph node abscesses and, in a more advanced stage,
generates an illness denominated ulcerative lymphangitis that
is characterized by ulcers of irregular shapes and sizes, or (ii)
internally, which is characterized mainly by abscess formation
in the lymph nodes and internal organs (kidney, liver, lung,
and spleen) (Britz et al., 2014). In the United States, ulcerative
lymphangitis outbreaks with large economic losses for horse
farmers have been reported (Aleman et al., 1996; Foley et al.,
2004; Spier, 2008). In addition, a recent study showed an increase
in the case numbers of horses infected with C. pseudotuberculosis
biovar equi during the last 10 years in the western region of the
USA, which is being considered as an endemic area (Kilcoyne
et al., 2014).

Whole genome sequencing of C. pseudotuberculosis biovar
equi strain 258, isolated from a horse with ulcerative lymphangitis
in Belgium, revealed the presence of pathogenic islands in
its chromosome as well as genes that might contribute to its
virulence, most of them coding for secreted proteins. Moreover,
putative antigenic proteins were identified through reverse
vaccinology (Soares et al., 2013a). Some studies have shown that
extracellular proteins are related to the pathogenic process of
C. pseudotuberculosis (Wilson et al., 1995; Billington et al., 2002;
Pacheco et al., 2012; Seyffert et al., 2014). However, phospholipase
D (Pld) exotoxin, which contributes to bacterial spread in the
host, is considered the major virulence factor of this pathogen
(McKean et al., 2007). In addition, some secreted factors related
to the virulence of C. pseudotuberculosis have already been
described, such as serine protease CP40 (Wilson et al., 1995) and
two operons, fagABC and ciuABCDEF, that are involved in iron
uptake (Billington et al., 2002; Ribeiro et al., 2014).

The study of host-bacteria interactions in natural hosts,
such as horses, cattle or sheep, is difficult because of the
underlying genetic variability among animals; it is also extremely
expense and requires multiple replicates and control animals.
Thus, several studies have used mice as a model for studying
both the pathogenic process (Jolly, 1965; Zaki, 1966; Nieto
et al., 2009) and vaccination testing against infection by C.
pseudotuberculosis (Simmons et al., 1997; Lan et al., 1999;
Gorman et al., 2010; Ribeiro et al., 2014; Droppa-Almeida et al.,
2016). In regards to host-bacteria interactions, some work has
explored the serial passage process of bacterial pathogens in
vitro or in an in vivo model to identify factors that might be
involved in virulence (Fernández et al., 2000, 2013; Bleich et al.,
2005; Chapuis et al., 2011; Fernandez-Brando et al., 2012; Liu
et al., 2015). In this study, we adopted an in vivo assay in
which the strain 258_equi was experimentally inoculated in mice

followed by high-throughput proteomic analysis. We screened
the functional genome of 258_equi after experimental passage
in the murine host by examining the proteins released into
the culture supernatant of this strain using the three-phase
partitioning (TPP) protocol for obtaining extracellular proteins
(Paule et al., 2004) and a mass spectrometry, data-independent
acquisition (LC-MSE) approach to identify and quantify the
proteins (Silva et al., 2006; Pacheco et al., 2011).

MATERIALS AND METHODS

Bacterial Strain and growth Conditions
Corynebacterium pseudotuberculosis biovar equi strain 258 was
isolated from a horse in Belgium; this strain was cultivated
under routine conditions in brain–heart infusion broth (BHI-
HiMedia Laboratories Pvt. Ltd., India) at 37◦C. When necessary,
1.5% agar was added to the medium for solid culture. For
extracellular proteomic analyses, 258_equi was grown in a
chemically defined medium (CDM) [(Na2HPO4_7H2O (12.93
g/L), KH2PO4 (2.55 g/L), NH4Cl (1 g/L), MgSO4_7H2O (0.20
g/L), CaCl2 (0.02 g/L), and 0.05% (v/v) Tween 80] with 4% (v/v)
MEM Vitamins Solution (Invitrogen, Gaithersburg, MD, USA),
1% (v/v) MEM Amino Acids Solution (Invitrogen), 1% (v/v)
MEM Non-Essential Amino Acids Solution (Invitrogen), and
1.2% (w/v) glucose at 37◦C (Moura-Costa et al., 2002).

Experimental Infection in a murine Model
The infection parameters were performed according to Moraes
et al. (2014) and Ribeiro et al. (2014). In this study, female
BALB/c mice between 6- and 8-weeks-old were utilized; they
were provided by the Animal Care Facility at the Biological
Sciences Institute at the Federal University of Minas Gerais
and were handled in accordance with the CEUA guidelines
of the UFMG Ethics Committee on Animal Testing (Permit
Number: CETEA 103/2011). For the bacterial passage assay,
three mice were infected via intraperitoneal injection with 106

colony forming units (CFU) of strain 258_equi. Thirty-six hours
after infection, the animals were sacrificed, and the spleen was
aseptically removed for recovering the bacteria. Each spleen
was individually macerated in a sterile saline solution (0.9%
NaCl2) and seeded onto BHI agar plates for incubation at 37◦C
for 48 h. Subsequently, one bacterial colony of each BHI plate
was isolated and cultured in BHI broth at 37◦C with shaking
(180 rpm) until the OD600 = 0.8. Three different stock cultures
were generated and stored at −80◦C in BHI broth and 10%
glycerol. The recovered bacteria are referred to as Recovered
(Rc), and bacteria with no previous host contact were used as
the Control (Ct). For bacterial virulence assays, bacteria from
the three individual frozen stocks of Rc and the Ct condition
were centrifuged at 5,000 × g for 5 min and washed twice
in saline solution, followed by resuspension in saline solution.
Three groups of five mice were infected with bacteria from the
Rc or Ct condition via intraperitoneal injection of a suspension
containing 106 or 105 CFU. The animals’ survival rates were
calculated and represented in GraphPad Prism v.5.0 (GraphPad
Software, San Diego, CA, USA) using the Kaplan-Meier survival
function.
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Preparation of extracellular proteins for
proteome Analysis
For proteomic analysis, three independent control and recovered
colonies from the three individual frozen stocks were grown in
CDM to an OD600 = 0.8. The cultures were then centrifuged
for 20 min at 2,700 × g. The supernatants were filtered using
0.22-µm filters, 30% (w/v) ammonium sulfate was added to the
samples, and the pH of the mixtures was adjusted to 4.0. Next, 20
mL/L N-butanol was added to each sample. The samples were
centrifuged for 10 min at 1,350 × g and 4◦C. The interfacial
precipitate was collected and resuspended in 1 mL of 20 mM
Tris-HCl, pH 7.2 (Paule et al., 2004). Proteins were quantified
using the Bradford assay. For label-free proteomic analysis, the
protein extract was concentrated using a spin column with a
10 kDa threshold (Millipore, Billerica, MA, USA). The protein
was denatured (0.1% RapiGEST SF at 60◦C for 15 min) (Waters,
Milford, CA, USA), reduced (10 mM DTT), alkylated (10
mM iodoacetamide) and enzymatically digested with trypsin
(Promega, Sequencing Grade Modified Trypsin, Madison, WI,
USA). Glycogen phosphorylase (Waters Corporation, SwissProt
P00489) was added to the digests to a final concentration of 20
fmol/µl as an internal standard for normalization prior to each
replicate injection. The digestion process was stopped by adding
10 µL of 5% TFA (Fluka, Buchs, Germany) (Silva et al., 2006).

Mass Spectrometry analysis, data
processing and quantification
Three independent biological replicates of each experimental
condition were digested, as described above, for MSE

analysis. Qualitative and quantitative nanoUPLC tandem
nanoESI-HDMSE (Nano Electrospray High Definition Mass
Spectrometry) experiments were performed using a 1 h reversed-
phase gradient from 7 to 40% (v/v) acetonitrile (with 0.1% v/v
formic acid) at 500 nL.min−1 using a nanoACQUITY UPLC 2D
RPxRP Technology system (Gilar et al., 2005). All analyses were
performed using nano-electrospray ionization in the positive ion
mode (nanoESI (+)) and a NanoLockSpray (Waters, Manchester,
UK) ionization source. The mass spectrometer was calibrated
with an MS/MS spectrum of human [Glu1]-Fibrinopeptide
B (Glu-Fib) solution (100 fmol.mL−1) delivered through the
reference sprayer of the NanoLockSpray source. The double-
charged ion ([M + 2H]2+ = 785.8426) was used for initial
single-point calibration, and MS/MS fragment ions of Glu-Fib
were used to obtain the final instrument calibration. Multiplexed
data-independent (DIA) scanning with additional specificity
and selectivity for non-linear “T-wave” ion mobility (HDMSE)
experiments were performed using a Synapt G2-S HDMS mass
spectrometer (Waters, Manchester, UK), which was constructed
to automatically switch between the application of standard MS
(3 eV) and elevated collision energies HDMSE (19–45 eV) to the
transfer “T-wave” CID (collision-induced dissociation) cell with
argon gas.

The proteins were identified, and quantitative data were
packaged using dedicated algorithms (Silva et al., 2005;
Geromanos et al., 2009) and searching against a database
with default parameters to account for ions (Li et al., 2009).
The databases used were reversed “on-the-fly” during the

database queries and appended to the original database to
assess the false positive rate during identification. For proper
spectra processing and database searching conditions, the
ProteinLynx Global SERVER v.2.5.2 (PLGS) with IdentityE and
ExpressionE informatics v.2.5.2 (Waters, Manchester, UK) was
used. UniProtKB (release 2013_01) with manually reviewed
annotations was used, and the search conditions were based on
taxonomy (Corynebacterium pseudotuberculosis). The maximum
allowed missed cleavages by trypsin was up to 1, and various
modifications, including carbamidomethyl (C), N-terminal
acetyl, phosphoryl (STY) and oxidation (M), were allowed. A
peptide mass tolerance value of 10 ppm was used. The search
threshold to accept each spectrum was the default value in
the program with a false discovery rate value of 4% (Curty
et al., 2014). For protein quantitation, PLGS v2.5.2 software was
used with the IdentityE algorithm using Hi3 methodology and
glycogen phosphorylase (muscle form; P00489) peptides were
used as internal standards. The collected proteins were organized
by the PLGS ExpressionE tool algorithm into a statistically
significant list (p-value ≤ 0.05) that corresponded to higher
or lower regulation ratios between the different groups. The
calculation of the log ratio and the confidence interval was based
on a Gaussian distributionmodel, which allows for the possibility
of an uncertain peptide assignment, an incorrect assignment of
data to a cluster or interference. The confidence interval of 95%
was used, and the probability distribution of the measured value
of a log2 ratio more than a 1.2 was more symmetric than that
obtained for the direct ratio, making the results interpretations
more meaningful (Levin et al., 2011). For comparing pairs of
experimental groups, proteins with a differential expression log2
ratio greater than or equal to 1.2 between the two conditions were
considered for higher or lower abundance level determination
(Levin et al., 2011).

Bioinformatics Analysis
The proteins identified in both conditions were analyzed using
the following prediction tools: SurfG+ v1.0 (Barinov et al.,
2009) was used to predict subcellular localization, SecretomeP 2.0
server was used to predict proteins exported from non-classical
systems (positive prediction scores greater than 0.5; Bendtsen
et al., 2005a), TatP was used to predict proteins with twin-
arginine signal peptides (Bendtsen et al., 2005b) and the PIPs
software was used to predict the proteins in pathogenicity islands
(Soares et al., 2012). Gene ontology (GO) functional annotations
were generated using the COG data base (Tatusov et al., 2001).
Pathway enrichment analysis of significant proteins was carried
out using the Kyoto encyclopedia of genes and genomes (KEGG)
database. A protein-protein interaction network was generated
using Cytoscape version 2.8.3 (Shannon et al., 2003) with a
spring-embedded layout.

RESULTS

Evaluation of the virulence potential of
258_equi after passage in a murine host
In the first in vivo assay, BALB/cmice were infected with 106 CFU
of bacteria that had no previous host contact and with bacteria
that were recovered from mouse spleens. We observed that all of
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the infected animals under both the control (Ct) and recovered
(Rc) conditions died within 48 h of infection (Figure 1A). These
results reveal the virulence potential of 258_equi; however, in this
assay, we did not observe differences in the virulence potential
between the control and recovered condition. Next, the Ct and
Rc condition were analyzed using a new survival assay in BALB/c
mice, but a 105 CFU infection dose was used (Figure 1B). In this
assay, we observed altered virulence in the Rc condition; the mice
began dying in the first 10 days post-infection (40% decrease in
survival rate) and mortality reached 100% in less than 20 days
post-infection. For the Ct condition, while mice died during the
first 10 days of infection, this early stage only resulted in 20%
mortality, and mortality did not reach 100% until 23 days post-
infection. Finally, we detected abscess formation in the internal
organs (kidney and liver) of all animals infected with either the
Ct or Rc condition in the assays using 105 CFU (data not shown).
These results show that passage in a murine host affects the
virulence potential of 258_equi.

Overview of the exoproteome of
C. pseudotuberculosis strain 258 after
passage in a murine Host
After passage of 258_equi in BALB/c mice, we detected changes
in its virulence potential. To assess whether this change is
reflected in its proteome, considering the importance of exported
proteins in bacterial infection (Hilbi et al., 2012), we used a
TPP/LC-MSE approach (Pacheco et al., 2011) to compare the
extracellular proteome of the control and recovered conditions.
From our proteomic analysis, a total of 113 non-redundant
258_equi proteins were detected with high confidence and were
identified in at least two of the three biological replicates of
the two conditions tested, with an average of 17 peptides per
protein and an FDR of 1%. The peptides were identified with
a normal distribution of 10 ppm error for the total identified
peptides (Supplementary Figure 1A). In addition, only the
source fragments of peptides with a charge state of at least [M
+ 2H]2+ and the absence of decoys were considered to increase
data quality.

The absolute quantitation of proteins present within a
complex protein mixture is extremely important for understating
physiological adaptations in response to biological demands
promoted by environmental changes (Mallick and Kuster, 2010).
To estimate the absolute abundance of identified proteins
in the 258_equi exoproteome, we utilized the Hi3 method
(Silva et al., 2006) where the average MS signal responses
for the three most intense tryptic peptides for each protein
were determined, including those of the internal standard
protein glycogen phosphorylase (muscle form; P00489). All
samples were normalized prior to injection using “scouting
runs,” and the stoichiometry between the intensity and
molarity proportion prior to the replicate runs per condition
were considered. From this analysis a dynamic range of
protein abundance was generated spanning three orders of
magnitude (Supplementary Figure 1B). Lysozyme M1 was the
most abundant protein detected. This protein, which is related
to bacterial virulence, is localized in the pathogenic island

Cp258PiCp02. Lysozyme M1 was also detected in a membrane
shaving of a field isolate of C. pseudotuberculosis biovar ovis (Rees
et al., 2015). Other proteins, such as hydrolase domain containing
protein, trehalose corynomycolyl transferase B, which is involved
in the cell wall synthesis, and FtsX, a protein related to division
cellular, were among the most abundant proteins. All of the
identified proteins on the protein abundance scale are listed in
Supplementary Table 1.

For evaluating the relative differences between the core
exoproteome of the Ct and Rc conditions, we used label-
free quantification (Silva et al., 2005, 2014; Pacheco et al.,
2011). In agreement with the PLGS analyses, 105 proteins
between the Rc and Ct conditions presented significant
statistical values (p < 0.05) using the ExpressionE algorithm
tool (Supplementary Table 2). Differential expression was
considered for proteins that were significantly different (p <

0.05) and had log2 ratios equal to or greater than a factor of
1.2, as described by Levin et al. (2011). Based on this analysis,
39 proteins were induced and 16 were down-regulated in
the Rc condition (Table 1). In addition, we detected proteins
exclusive to the proteome of each condition; cytochrome c
nitrate reductase small subunit NrfH was detected only in the Ct
condition. In only the Rc condition, two multidrug resistance
proteins, the cytochrome oxidase assembly, a thioredoxin-
related protein and three proteins with unknown function were
identified (Supplementary Table 3).

In silico prediction of 258_equi exoprotein
localization
Extracellular proteins produced by prokaryotic organisms are a
subset of proteins present in the extracellular milieu, which is
composed of both proteins with signal peptides that are actively
secreted by classical secretion systems and proteins without
signal sequences that are exported by non-classical secretion
systems (Bendtsen et al., 2005a; Desvaux et al., 2009). To identify
proteins that contain signal peptides and to determine their
subcellular localizations, we utilized the SurfG tool (Barinov
et al., 2009), which enables the classification of proteins within
the following categories: cytoplasmic (CYT), membrane (MEM),
potentially surface-exposed (PSE) and secreted (SEC) (Figure 2A
and Supplementary Tables 2, 3). Of the total proteins identified,
66% (n = 74) presented positive predictions for signal peptides
(Figure 2B). This group was composed of predicted proteins
in the SEC and PSE categories. When these results were
compared with the in silico data of the 258_equi genome, we had
identified approximately 65% and 16% of the proteins predicted
to be SEC and PSE, respectively. The proteins that did not
present positive predictions for signal peptides were analyzed
by SecretomeP (Bendtsen et al., 2005a) to identify proteins
that could eventually be exported by non-classical secretion
systems. According this analysis, nine proteins were predicted
to be PSE, seven proteins were predicted to be MEM and two
proteins were predicted to be CYT as they presented High SecP
scores above 0.5 (Supplementary Tables 2, 3), suggesting that
these proteins might be exported by a non-classical secretion
system. Taken together, 86% of the 258_equi exoproteome was
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FIGURE 1 | Survival assay of Balb/C mice infected with strain 258_equi. (A) Percent survival of BALB/c mice infected with 106 CFU of bacteria. (B) Percent survival of

BALB/c mice infected with 105 CFU of bacteria. Ct, control condition and Rc, recovered condition. The mortality rates were measured daily. The results presented in

(A,B) represents three independent experiments. The p-values were calculated using the log rank test. Note that infection with 105 CFU of bacteria changes the

potential virulence of Rc (p = 0.0024, log-rank test) relative to Ct. NS = P > 0.05; **P < 0.01.

composed of extracellular proteins (Figure 2B). In addition,
our proteomic analysis detected 17 proteins predicted to be
lipoproteins (Supplementary Table 2).

Functional Classifications of the
differentially Expressed proteins in strain
258_equi after passage in a murine Host
To evaluate the functional characteristics of the 258_equi
exoproteome, we performed a Clusters of Orthologous Groups
analysis (Tatusov et al., 2001). According GO analysis, the
proteins were organized by clusters of orthologous groups
(Figure 3A). When we evaluated each functional category, we
observed that the majority of the proteins detected as induced
in the Rc condition were predicted as “function unknown” and
“general function only” (Table 1 and Figure 3B). These results
represent a lack of knowledge regarding a protein set that might
play an important role in the pathogenic process of 258_equi,
and therefore, more studies are necessary to investigate the true
roles of these proteins in the virulence of this strain. When
we evaluated proteins with known or predicted functions, the
majority of those that were more abundant in the Rc condition
were related to cellular processes and signaling (Figures 3A,B).
According to in silico data of the 258_equi genome, this
pathogen has five iron uptake systems (Supplementary Figure 2;
Soares et al., 2013a). Interestingly, in our proteomic analysis,
we identified components of each of the 5 systems as more
abundant in the Rc condition, including CiuA, FhuD, FagC,
HmuT, HmuV, and HtaA (Table 1), suggesting that iron uptake
pathways may play an important role in the pathogenesis of
C. pseudotuberculosis. Moreover, we detected several proteins
related to bacterial pathogenesis that contribute to processes
of adherence, intracellular growth and evasion of the immune
system (Table 1 and Supplementary Tables 2, 3).

To identify the most relevant biological pathways of
the proteins differentially expressed between the Ct and
Rc conditions, we performed a KEGG enrichment analysis.
Enrichment results revealed eight biological pathways with
significant differences (p < 0.05). The proteins that were induced
in the Rc condition are in pathways such as ABC transporters,

bacterial secretion systems, peptidoglycan biosynthesis and
protein export (Figure 3C). This finding confirms that secretion
and secreted proteins are key elements in C. pseudotuberculosis
virulence and adaptation, as suggested by previous reports
that identified several secreted proteins as potential virulence
factors in C. pseudotuberculosis (Pacheco et al., 2011; Silva
et al., 2013; Rees et al., 2015). Most proteins perform their
function in a context of networks by interacting with other
proteins (Schleker et al., 2012). To evaluate the 258_equi
exoproteome at the network level, we performed a protein-
protein interaction analysis of the differentially expressed
proteins using the Cytoscape tool. After Cytoscape analysis, the
258_equi exoproteome network was composed of 87 proteins
(Figure 4). In the PPI-network, we observed enrichment clusters
in heme biosynthesis and ABC transporters related to iron
uptake, peptidoglycan biosynthesis and antibiotic biosynthesis.
In addition, we observed that some clusters were formed by
unknown proteins, which shows that these proteins may play an
important role in the virulence of C. pseudotuberculosis.

DISCUSSION

Here, we report a comprehensive analysis of the exoproteome
of an equi isolate of C. pseudotuberculosis. The 258_equi
exoproteome was composed of a high number of extracellular
proteins, and a similar result was observed in a study conducted
by Pacheco et al. (2011), which characterized the extracellular
proteomes of C. pseudotuberculosis biovar ovis strains. The
infections caused by C. pseudotuberculosis are chronic in
character, and due to this, post-infection disease signs may not
begin to appear until after 6 months. Necropsy is the only viable
way to identify abscesses, but the cost is high. Testing several
strains requires many animals and would result in high economic
and ethical costs. Thus, mice are used as an alternative model
for studying C. pseudotuberculosis infection, because they are
relatively resistant to experimental challenge and are able to
contain infection (Jolly, 1965; Zaki, 1966). In addition, mice have
been shown to be efficient for the evaluation of different vaccine
compounds and of humoral and cellular immune responses
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TABLE 1 | Proteins differentially expressed between the recovered (Rc) and

control (Ct) conditions.

Accession Description Score Gene Rc:Ct

Log(2)Ratio

ADHESION AND MOTILITY CELL

I3QZX5_CORPS Sortase A 13261.7 srtA 1.28

AMINO ACID TRANSPORT AND METABOLISM

I3QWW3_CORPS Diaminopimelate

decarboxylase

600.78 lysA −1.27

I3QXT1_CORPS Chorismate

synthase aroC

614.35 aroC −1.54

I3QY54_CORPS 4-hydroxy-

tetrahydrodipicolinate

reductase

1212.64 dapB −1.67

CELL DIVISION AND CELLULAR CYCLE

I3QW64_CORPS Cell division protein

FtsX

2967.84 ftsX 1.88

I3QYI0_CORPS Cell division protein

FtsQ

4225.31 ftsQ 1.24

I3QYH4_CORPS Antigen 84 31337.36 ag84 1.23

CELL WALL/MEMBRANE AND ENVELOPE BIOGENESIS

I3R031_CORPS Trehalose

corynomycolyl

transferase B

112067.8 cmtB 3.10

I3QV43_CORPS Penicillin binding

protein

transpeptidase

18512.68 pbpB 1.80

I3QZM5_CORPS D-alanyl-D-alanine

carboxypeptidase

2988.16 pbp4 1.46

I3QX04_CORPS Mycothiol

acetyltransferase

5934.73 mshD −4.62

COENZYME METABOLISM

I3QVB7_CORPS Uroporphyrinogen

decarboxylase

3376.83 hemE 1.89

DNA METABOLISM: REPLICATION, RECOMBINATION AND REPAIR

I3QXT3_CORPS Amino

deoxychorismate

lyase

4162.99 yceG 1.56

GENERAL FUNCTION PREDICTION ONLY

I3QZJ3_CORPS Lipoprotein LpqE 44732.01 lpqE 3.74

I3QXX7_CORPS Lipoprotein 36815.57 Cp258_1221 3.62

I3QXE1_CORPS Hemolysin related

protein

893.83 tlyC 1.75

I3QXC3_CORPS Esterase 496.62 Cp258_1017 1.30

I3QZ50_CORPS Peptidase S8A

Subtilisin family

40174.72 Cp258_1653 1.23

I3QW71_CORPS Periplasmic binding

protein

11884.29 fecB 1.21

I3QW24_CORPS Hydrolase domain

containing protein

17234.12 Cp258_0564 −1.26

I3QYP5_CORPS MutT NUDIX family

protein

5870.55 Cp258_1498 −1.38

I3QV42_CORPS Protein yqeY 23153.72 yqeY −1.57

I3R0F7_CORPS Anthranilate

synthase

component II

382.53 trpG −1.63

I3QXJ1_CORPS Prolipoprotein LppL 2671.28 lppL −3.38

I3QZA3_CORPS Protein NrdI 7211.97 nrdI −4.70

INORGANIC ION TRANSPORT AND METABOLISM

I3QVU3_CORPS Cell surface hemin

receptor HtaA

11874.87 htaA 2.22

I3QUS8_CORPS Iron-regulated

membrane protein

7389.79 piuB 1.85

(Continued)

TABLE 1 | Continued

Accession Description Score Gene Rc:Ct

Log(2)Ratio

I3QUW4_CORPS ABC type metal ion

transport system

1016.6 mntA 1.75

I3QXC5_CORPS CiuA protein 12242.99 ciuA 1.64

I3QVU4_CORPS Hemin binding

periplasmic protein

HmuT

14010 hmuT 1.47

I3QVU6_CORPS Hemin import ATP

binding protein

HmuV

785.22 hmuV 1.34

I3QUM8_CORPS FagC protein 392.95 fagC 1.23

I3QX10_CORPS Iron(3+)-

hydroxamate-

binding protein

FhuD

13922.33 fhuD 1.21

I3QUW5_CORPS Manganese zinc

iron transport

system ATP-binding

391.52 mntB −1.38

INTRACELLULAR TRAFFICKING, SECRETION, AND VESICULAR TRANSPORT

I3QX59_CORPS ABC transporter

domain containing

protein

1150.79 Cp258_0956 1.79

I3QXV8_CORPS Protein translocase

subunit SecF

1729.78 secF 1.66

I3R0D7_CORPS Oligopeptide

binding protein

OppA

3469.47 oppA7 1.50

I3QWP1_CORPS Oligopeptide

binding protein

OppA

41781.98 oppA3 1.38

I3QZC0_CORPS ABC type

antimicrobial

peptide transport

1159.51 Cp258_1740 1.34

I3QXV9_CORPS Protein translocase

subunit SecD

2879.45 secD 1.24

LIPID TRANSPORT AND METABOLISM

I3QW96_CORPS Enoyl CoA

hydratase echA6

611.75 echA6 −1.40

POST-TRANSLATIONAL MODIFICATION, PROTEIN TURNOVER,

CHAPERONES

I3QW38_CORPS Lon protease 6439.26 lon 1.34

UNKNOWN FUNCTION

I3QYD5_CORPS Unknown Function 8143.98 Cp258_1380 4.17

I3QZP8_CORPS Unknown Function 14676.76 Cp258_1869 2.93

I3QW25_CORPS Unknown Function 1433.27 Cp258_0565 2.74

I3R0E2_CORPS Unknown Function 141172.41 Cp258_2121 2.60

I3QW83_CORPS Unknown Function 1589.85 Cp258_0622 2.39

I3QWP8_CORPS Unknown Function 54353.63 Cp258_0793 2.29

I3R049_CORPS Unknown Function 2318.32 Cp258_2028 2.11

I3QZK0_CORPS Unknown Function 1030.59 Cp258_1819 1.37

I3QV90_CORPS Unknown Function 12638.51 Cp258_0263 1.34

I3QVZ1_CORPS Unknown Function 2256.66 Cp258_0531 −1.28

I3QYV3_CORPS Unknown Function 141.46 Cp258_1555 −1.53

I3QWK1_CORPS Unknown Function 221.77 Cp258_0745 −2.02

I3R080_CORPS Unknown Function 2564.2 Cp258_2060 −2.64

(Simmons et al., 1997; Lan et al., 1999; Gorman et al., 2010;
Droppa-Almeida et al., 2016). Other studies have used mice to
study virulence and pathogenesis, including an evaluation of
hepatic disease (Nieto et al., 2009), or to study knockout strains
(Moraes et al., 2014; Ribeiro et al., 2014).
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FIGURE 2 | Prediction of the subcellular localization of the 258_equi

exoproteome. (A) CYT, cytoplasmic; MEM, membrane; PSE, potentially

surface-exposed; and SEC, secreted. (B) SecP, SecretomeP prediction for

non-classical pathways; TatP, Tat-pathway prediction; SigP, SignalP prediction

for peptide signal prediction; and NP, no prediction for SecP, TatP, or SigP.

In our study, the serial passage process in mice was efficient
to induce changed both virulence and functional genome of
258_equi, which was showed through of proteomic analysis.
In the in vivo assay, we observed changes in its virulence
potential in a new infection assay with a lower infection dose.
Similar results from an evaluation of the virulence potential of
Shiga toxin (Stx)-producing Escherichia coli (STEC) were also
observed when mice were infected with a lower dose of the
recovered bacteria that had been recovered after serial passage
in a murine model (Fernandez-Brando et al., 2012). Other
studies have also shown that the serial passage process through
in vitro or in vivo models leads to changes in the virulence
potential of pathogens, including Helicobacter pylori, Escherichia
coli, Xenorhabdus nematophila, Arcobacter butzleri, Salmonella
enterica, and Shigella flexneri (Fernández et al., 2000, 2013;
Bleich et al., 2005; Chapuis et al., 2011; Fernandez-Brando et al.,
2012; Liu et al., 2015). Changes in the virulence potential of
these pathogens, as well as in 258_equi, show that this strategy
promotes the activation of genes related to bacterial pathogenesis.

A proteomic study conducted with Shigella flexneri after
passage in an in vivo model showed the induction of important
proteins that might contribute to its adaptation process during
infection (Liu et al., 2015). In our proteomic analysis, we
also observed changes in the 258_equi exoproteome after the
recuperation process, and proteins that might play an important
role in the pathogenesis of C. pseudotuberculosis were detected
(Figure 5). Interestingly, when compared the proteins that were
differentially induced in the Rc condition, with in silico data of
the core-genome of C. pseudotuberculosis biovar equi and biovar
ovis strains (Soares et al., 2013b), we observed that all proteins
are present in this core-genome. This result represents a set
of proteins that might be important to pathogenesis of biovar
equi and biovar ovis strains. Within our proteomic repertoire,
we detected predicted proteins such as lipoprotein. This class
of proteins is produced by several prokaryotic organisms and
then translocated across the membrane through the Sec or Tat
pathway (Pugsley, 1993; Shruthi et al., 2010). Different studies
have shown that these peripherally anchored membrane proteins
perform an important role in the physiology, virulence and

immune response of different gram-negative and gram-positive
pathogens. In addition, lipoproteins are recognized as excellent
vaccine targets (Nguyen and Götz, 2016). In the closely related
pathogen M. tuberculosis, lipoproteins have been shown to
be extremely important for virulence, contributing directly to
evasion of the immune system (Su et al., 2016).

Adhesion to host cells is a key determinant that contributes
to bacteria–host interaction; this process is required for bacterial
colonization and persistence. In vitro and in silico studies showed
that C. pseudotuberculosis contains pili, and these structures
play an important role in cellular adhesion (Yanagawa and
Honda, 1976; Soares et al., 2013b). In C. pseudotuberculosis,
spaA is a major pili gene that is encoded by the following
gene cluster: srtB-spaA-srtA-spaB-spaX-spaC (Soares et al.,
2013b). We found that sortase A (SrtA) was induced in
the Rc supernatant. This cell surface anchored transpeptidase
catalyzes the covalent attachment of precursor cell wall-attached
proteins (LPXTG proteins) to the peptidoglycan. In gram-
positive pathogens, such as Listeria monocytogenes (Bierne et al.,
2002), Streptococcus pneumoniae (Kharat and Tomasz, 2003), and
Staphylococcus aureus (Oh et al., 2006), srtA mutant strains had
reduced virulence in animal infection models. We also detected
important proteins related to the cell division and growth of
Corynebacterium induced in the Rc condition, such as FtsQ and
FtsX, which form part of the ftsXE cluster, and penicillin-binding
proteins (PBPs) (Letek et al., 2008). In E. coli, the FtsEX proteins
were suggested to form an ABC transporter system involved in
the uptake of substrates necessary to maintain osmotic pressure
during cell division (Schmidt et al., 2004; Reddy, 2007). FtsX
was detected among the most abundant proteins of the 258_equi
exoproteome, which suggests it is an important protein within
the biology of this strain. PBPs proteins have an important role
in cell-wall biosynthesis in Corynebacterium as they are essential
to peptidoglycan biosynthesis. In addition, this class of proteins
is a target of antibiotics (Letek et al., 2008). Antigen 84 (Ag84)
was also induced in the Rc condition. Interestingly, Ag84 was also
detected in a membrane shaving of an ovis strain isolated directly
from the caseous nodes of a diseased animal (Rees et al., 2015).
In M. tuberculosis, this protein presents antigenic characteristics
and is required for growth (Sassetti et al., 2003). These proteins
may have key functions in the replication and growth of C.
pseudotuberculosis during the infection process.

Iron is an essential element for both the virulence and growth
of several bacterial pathogens during the infection process.
However, free iron is not available to the bacterial inside the host,
thus several pathogens utilize different mechanisms to acquire
both free iron and iron from host iron proteins (Brown and
Holden, 2002). For C. pseudotuberculosis, iron acquisition is a
required step in its pathogenic process (Billington et al., 2002;
Ribeiro et al., 2014), and according to an in silico analysis of
the 258_equi genome, this bacterium has different genetic loci
associated with high-affinity iron transport systems as well as
surface-associated heme-uptake pathways (Soares et al., 2012).
In our proteomic analysis, we detected that specific proteins
related to iron acquisition were induced in the Rc condition.
Some these proteins are involved directly in the virulence of C.
pseudotuberculosis, such as the FagC protein that is component
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FIGURE 3 | Functional analysis of the differentially expressed proteome between the control and recovered conditions. (A) Proteins classified by COG functional

categories. (B) Categorization of differentially expressed proteins in biological processes. (C) KEGG pathway enrichment analysis of differentially expressed proteins.

The colors are based on the Rc:Ct relation; red, up-regulated; gray, unchanged; and blue, down-regulated.

FIGURE 4 | Protein-protein interaction network. The network nodes represent

proteins, and the edges represent protein-protein associations. The node size

(protein) is proportional to the amount of protein interacting (degree of

interaction). Dotted line = regulatory interactions (functional), solid line, physical

interactions; triangles, down-regulated proteins in the Rc condition; squares,

highly induced proteins in the Rc condition; and circles, unchanged proteins.

of the Fag system. A study performed with strains with defective
fagB(C) genes showed that these strains presented reduced
virulence in goats (Billington et al., 2002).

To acquire iron inside a host, bacteria synthesize and secrete
siderophores, which are low-molecular-weight iron chelators

that have a high and specific affinity for ferric iron (Ellermann
and Arthur, 2017). We detected the CiuA siderophore, which
is localized in the operon ciuABCDE (Corynebacterium iron
uptake). Studies performed with the pathogen C. diphtheria
showed that Ciu is a high-affinity iron uptake system (Kunkle
and Schmitt, 2005). Additionally, in a study performed with
C. pseudotuberculosis, a ciuA mutated strain showed reduced
virulence, demonstrating the role of this protein in the virulence
of this bacterium, and was also able to protect immunized
mice when they were challenged with a virulent strain (Ribeiro
et al., 2014). Another siderophore detected was the FhuD
siderophore, which is part of the conserved ferric hydroxamate
uptake system, Fhu. The uptake of ferric ferrichrome is described
in pathogens such as L. monocytogenes (Jin et al., 2006; Xiao
et al., 2011), Streptococcus pyogenes (Hanks et al., 2005) and
S. aureus (Sebulsky and Heinrichs, 2001). In L. monocytogenes,
FhuD contributes to the uptake of ferric hydroxamate from
ferrichrome, ferrichrome A and ferrioxamine B (Jin et al., 2006;
Xiao et al., 2011). In S. aureus, this protein was shown to
contribute both to proliferation within the blood and to the
formation of renal abscesses in mice (Mishra et al., 2012). Like
C. diphtheria, the genome of 258_equi also has genetic loci
with genes related to heme acquisition, such as the hemin-
uptake (hmu) operonHmuTUV and cell hemin specific receptors
htaA, htaB and htaC. The ABC hemin transporter HmuTUV,
together with cell-surface hemin receptors, is involved in heme
uptake from hemoglobin (Hb), hemoglobin/haptoglobin, and
myoglobin (Mb) (Kunkle and Schmitt, 2005; Allen and Schmitt,
2015). The presence of these systems shows the versatility of
258_equi in acquiring iron from different sources. Interestingly,
the HtaA protein was detected to be immunoreactive in an
immunoproteomic study of C. pseudotuberculosis biovar ovis
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FIGURE 5 | Overview of the 258_equi proteome after the recuperation process. A model representing the main exoproteins induced in the recovered condition,

including proteins related to biogenesis of the cell wall, cellular adhesion and different secretion pathways related to iron acquisition, bacterial nutrition, efflux pumps

and the Sec pathway.

(Seyffert et al., 2014). Taken together, these results indicate
that, similar to other pathogens, iron acquisition likely plays an
important role in 258_equi virulence as this strain uses distinct
iron acquisition systems during infection. This ability to acquire
iron may contribute to the increase virulence observed in the
258_equi strain.

Opp transport systems belong to the superfamily of conserved
ATP-binding cassette transporters and play an important role in
bacterial nutrition, signaling and virulence (Yu et al., 2014). The
OppA protein, which is responsible for the uptake of peptides
from the external medium, was induced in the Rc supernatant. In
Mycobacterium avium, the oppA gene contributed to infections
in a mouse model as well as to its viability in macrophages
(Danelishvili et al., 2014). The Sec pathway is the major secretion
system in several prokaryotic pathogens, components of this
system was also induced in the Rc supernatant. SecDF are
accessory factors from this translocation machinery and act
to increase protein translocation. Different studies show that
in S. aureus, the role of SecDF is related to the export of
several virulence factors that contribute to parts its pathogenic
process, such as adhesion, invasion and immune system evasion
(Sibbald et al., 2006). In addition, SecDF belong to the

resistance-nodulation-cell division (RND) family of multidrug
export pumps and contribute to the resistance process against
the antimicrobial effects of cathelicidins, a class of antimicrobial
peptides produced by the immune system (Blodkamp et al.,
2017). Similarly, proteins for antimicrobial agent resistance,
such as ABC-type antimicrobial peptide transporters, which
are localized in the pathogenicity island Cp258PiCp14, and
efflux transporters, such as NorM, which belongs to the
multidrug and toxic compound extrusion (MATE) transporter,
were also detected. These data are consistent with previous
in vitro studies, which showed that C. pseudotuberculosis is
resistant to several classes of antimicrobial agents (Judson and
Songer, 1991), and that activation of these defense pathways
against antimicrobial agents might contribute to survival of this
pathogen.

CONCLUSION

Herein, we characterized, for the first time, the exoproteome
of a C. pseudotuberculosis equi isolate. In addition, we showed
changes in both the virulence and proteomic profiles of
258_equi after its recovery from murine host spleens. Through
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a TPP/LC-MSE approach, we detected secreted virulence-
associated proteins. The up-regulation of these proteins
may account for the difference in virulence potential we
observed in the Rc condition compared with the Ct condition.
Altogether, our proteomic repertoire identified several
extracellular proteins involved in key processes of bacterial
pathogenesis that might contribute to the pathogenic process of
C. pseudotuberculosis.
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