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Quasi-Fermi-levels in quantum-well photoluminescence
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The nonequilibrium quasi-Fermi-levels of electrons and holes in quantum wells are calculated during
photoluminescence. It is assumed the electrons and holes are created by continuous laser excitation.
Various recombination processes are included: electron radiative recombination with holes bound at
neutral acceptors, electron radiative recombination with free holes, hole trapping at ionized acceptors,
and Auger decay. A numerical example is presented for acceptors in GaAs/Ga& „Al As quantum
wells.

I. INTRODUCTION

Quantum wells are one of the active areas of semicon-
ductors physics. A typical geometry is the two-
dimensional layer. The electrons and holes move freely
in two dimensions. Motion in the third dimension is lim-
ited to a well of a thickness which can be varied experi-
mentally, and is usually of the order of L =100 A. The
wells are created by alternate layers of different semicon-
ductors. Their lattice constants are usually matched to
reduce strains. A popular system is GaAs/Ga& Al„As,
where x can be chosen by the experimentalist.

The semiconductors have impurities that cause donor
and acceptor states. Bastard' was the first to consider
impurity binding in quantum wells. Other calculations
were done by Mailhoit et al. , by Greene and Bajaj, and
others. They consider the ground state plus low-
energy excited states. They usually considered one quan-
tum well with potential boundaries of a finite height. The
matching at the boundaries of the wells included changes
in the dielectric function and effective mass. Oliveira
also included r-dependent screening due to central-cell
corrections.

An important parameter in these calculations is the po-
sition z,. of the impurity in the quantum well. Taking the
center of the well as z =0, popular choices are putting
the impurity at the center (z; =0), at the edges
(z;=+L/2), or uniformly distributed throughout the
well ( L/2&z, &L/2). —

Photoluminescence has been used as an experimental
probe of acceptor states in quantum wells. ' ' The usu-
al experiment is to excite electrons and holes using con-
tinuous laser excitation. The luminescence shows a spec-
trum that is continuous in frequency. However, the spec-
trum has peaks which are associated with critical points
due to placing the acceptors at the center or edge of the
quantum wells. The interpretation of these spectra has
been a subject of lively discussion in the literature. '

Transient photoluminescence experiments have also been

done. ' A key parameter in the interpretation of the
photoluminescence is the value of the quasi-Fermi-levels
of the electrons and holes. For example, very different
spectra are obtained if the distributions follow Maxwell-
Boltzmann statistics compared to Fermi-Dirac statistics.
The semiconductors are insulating without the laser exci-
tations. The excitation creates the electrons and holes.
The density of particles depends upon the laser intensity.
A typical experiment may have an illumination intensity
of I =1 W/cm . What is the density of electrons and
holes at this or other intensities? The answer depends
upon the value of numerous rate constants for different
relaxation processes.

Here we try to calculate the quasi-Fermi-levels of elec-
trons and holes as a function of the laser intensity and of
material parameters. We hope this calculation will pro-
vide a quantitative interpretation of the photolumines-
cence experiments.

The present calculation considers the following pro-
cesses which determine the quasi-Fermi-levels: (1) inter-
band absorption, (2) electron radiative recombination
with free holes, (3) electron nonradiative recombination
(Auger) with free holes, (4) electron radiative recombina-
tion with bound holes, and (5) trapping of holes at accep-
tors. Numerical examples are given for a
GaAs/Gai Al As quantum well.

II. THE MODEL

Many different processes can occur when photons are
absorbed in a semiconductor. Only a small subset of
these processes has been selected for consideration here.
This choice was made with one eye on the experiments.
We assume that the prominent impurities are acceptors.
Their density is small —typically around N ~ = 10'
cm —although it can be increased by doping. It is as-
sumed that the temperature is low, for example, T =1 K.
The acceptors are all neutral in equilibrium, so the chem-
ical potential is initially between the acceptor level and
the top of the valence band.
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A. Interband absorption

Electrons and holes are created by interband absorp-
tion of photons from a laser whose frequency exceeds the
energy gap of the semiconductor. Since the acceptors are
neutral, the holes are created in the valence band. Call w
the rate per unit area of creating electrons and holes. It
is proportional to the intensity I of the laser,

w =wlI

v(k p,.)'
w~ =4m.a& G(A'co —e ),

m, (A'co)

G(E)= 2
(nl2 )Q—E„.E1+e

(2)

The fine-structure constant is denoted by a&, the electron
mass is m„ the effective reduced mass of the electron-
hole systems is iM, the light polarization is g, and the in-
terband matrix element is p,„. The factor G (E) includes
exciton effects due to the Coulomb attraction of the elec-
tron and hole. For empty bands in two dimensions, exci-
tons of binding energy E„ increase wI by a factor of 2 at
the bottom of the band, i.e., for photon energies just
above the energy gap. This factor of 2 decreases slowly
to unity for photon energies which are increased above
the band minimum —the energy scale is the exciton bind-
ing energy. For heavily doped bands, the Mahan exciton
increases the interband absorption at threshold. The en-
ergy gap for three-dimensional bulk semiconductors is
Eg. In quantum wells, the minimum energies of electron
and hole are raised due to the quantization in the z direc-
tion. The effective band gap cg of the quantum well is
larger than E .

B. Quasi-Fermi-levels

C. Electron radiative recombination with free holes

This process is just the reverse of the excitation pro-
cess. The electron and free hole recombine and emit a
photon. The coefficient w, in units of photons per area

The electrons and holes recombine by various process-
es. Under cw excitation, these processes create a non-
equilibrium but steady-state distribution of electrons (n, )

and holes (ni, ). The Coulomb scattering between parti-
cles is very efficient at equilibrating the electrons and
holes into Fermi-Dirac distributions with an effective
temperature T & T. The steady-state distribution can be
represented by a quasi-Fermi-level, or quasichemical po-
tential, for the electrons and holes. An important con-
sideration is the rate at which the particle temperature
T relaxes back to the phonon temperature T. This re-
laxation is done through the electron-phonon and hole-
phonon interactions. This issue has been discussed in the
"hot-electron" literature. Here we assume that such re-
laxation occurs, and that the particle temperature
remains small. That is, it is small enough that thermal
smearing does not contribute significantly to experimen-
tal energy resolutions.

2e d g (~ )2
2 (2 )3

X f d kn, (k) gn„(k)

AkX6 c, —A'co'+
2p,

(4)

The densities of electrons and free holes are defined as

d k
n, =2f n, (k),(2')

(5)

d kn„=2, n„k .
(2~)

This expression will be evaluated in two limits. The first
is for a low density of electrons and holes. Then one can
use Maxwell-Boltzmann statistics for their densities. In
that case,

mA
n, (k)=n, e

m, k~ T
J

—PE, (k)

n nI,
wx

np Tx

2
PcuI/r =—43a&co' G(fico' —E ),

Mb
1/no =

m, k~T '

muib=m, g muj.

(10)

In doing these integrals, we assume the temperature is
small, so that all of the particles are at small wave vectors
k. All matrix elements are evaluated at k =0. We aver-
age over the final directions and polarizations of the emit-
ted photons.

The recombination of electrons and holes is propor-
tional to their joint density, or w„=n, n&. This is true
when the densities are dilute, and Maxwell-Boltzmann
statistics is suitable. In GaAs the constant

per second, has some factors which are similar to the rate
of absorption w given above. They differ in detail because
of several factors. The photons' wave vector q can be in
any direction, and one must average in three dimensions
over directions and polarizations. The emission rate of
photons depends upon the occupation numbers of elec-
trons [n, (k) = 1/(exp {13[v.,(k) —p, ]]+ 1)] and holes
[n„(k)] in the two bands. The index i denotes light- or
heavy-hole band. It does not depend upon the number of
photons in the state q, since this blackbody background
radiation is assumed to be negligible. The optical transi-
tion is vertical in k space, since the photon wave vector is
negligible. We use co for the frequency of the laser pho-
ton making the original interband transition, and co for
the frequency of the emitted photon:
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no= 1.0X10' (T/K. ) cm . Maxwell-Boltzmann statis-
tics are suitable whenever n, h (no(T).

However, for high densities of particles, Fermi-Dirac
statistics are required. The emission rate is no longer
proportional to the product of n, nI, . For Fermi-Dirac
statistics, we have

d k
2 f 2 n, (k) g n„(k) =n

(2m. )
(12)

The integral equals just the density n of whichever band
has the smallest Fermi wave vector (m =c,u). If there
are equal number of electrons and holes, then m =v; since
the holes have a higher degeneracy, their Fermi function
cuts off the wave-vector integrals before the Fermi func-
tion of the electrons. For the sake of discussion, we shall
assume n =nI, . Thus we find, after averaging over pho-
ton directions and polarizations,

u. =n, /r. . (13)

Again we should include the factor G(A'co' —E ) for the
exciton enhancement at the band edge.

D. Electron radiative recombination with bound holes

At low and moderate intensities of the laser excitation,
a moderate density of electrons and holes is produced.
An important recombination process is the emission of
photons due to electron recombination with hole at ac-
ceptors. The rate w~ is proportional to the density of ac-
ceptors N„(number/cm ). One also has to average in

three dimensions over the directions and polarizations of
the photons. This brings us to the expression

2
8 Peu

wg — Ng&f 2 2 Jg
m~c

(14)

Jii =2N(i, ,z, ) f n, (k) (Jz, , l, )k,
(2~)

X [Es —E~(z, )+E,(k)),

mzJ(z;,X,k)= f d r e'"' cos e

(18)

The matrix element J(z;,A, , k), normalization N(A, ,z;),
and binding energy Eii(z;) of the acceptor variational
wave function are given in Refs. 1 and 16. The quantity
Jz has the dimensions of length times energy. The varia-
tional parameter A, for the acceptor state depends upon
both L, and z;.

This expression has some interesting features that are
an important part of our results. At small values of the
electron density, the integral can be evaluated as

J~ =n, %co'N(A, ,z; ) J(z;,A, , O)

All of the electrons are near the point k =0, so the ma-
trix element is evaluated at this point. Here one finds
that wz =n, %~ /s, z, where

((NJ) ) = f dz p(z;)N (A, ,z;)J2(, , A, , O) . (19)

Usually we take the probability distribution of impurities
p (z, ) to be a constant p = 1/L in the region
( L/—2, L/2). These results are appropriate for a small
concentration of electrons, which happens when the
quasi-Fermi-level is small.

Usually at low excitation intensities the interband ab-
sorption is balanced by the recombination at acceptors.
Then this equation is combined with (1) to give an expres-
sion for the density of electrons

n, =s,z wiI/N„. (20)

The electron density is proportional to the light intensity.
This result is obtained by assuming that either the radia-
tive recombination with free holes or else the nonradia-
tive Auger recombination is less likely than the recom-
bination at acceptors. That is the case at small excitation
intensity.

The integral in (15) has the property of giving a finite
value in the limit that n, ~ ~. Call this value Jzp. The
integral over wave vectors converges when n, (k) = 1 for
all values of k. For higher intensities of the laser excita-
tion, the recombination of electrons at acceptors satu-
rates, and can no longer control the rate of recombina-
tion. In this case, other mechanisms take over, such as
electron recombination with free holes, or Auger recom-
bination.

K. Auger recombination

2m,
L

(21)

cos (2n +1), E„=E (20n +1) (22)

2~nz
sin E„=ED(2n) (23)

Here the symbol m, denotes the e6'ective mass of the
band. All of these states vanish at z=+L/2. Usually
the energy Fp is large enough so that a11 particles are in
the band with the lowest subband energy: E=Ep with

Auger recombination of electrons and holes is a nonra-
diative process which occurs because of Coulomb interac-
tions between the particles. There are six possible pro-
cesses. The electron can recombine with either (i) a free
hole, or (ii) a bound hole, while exciting to high kinetic
energy either (a) another electron, (b) a free hole, or (c) a
bound hole. Our calculations show that this process may
be important for high laser intensities. However, for in-
tensities less than I= 1 W/cm, Auger decay appears to
be unimportant. Here we shall sketch the derivation of
just one of the six processes: the recombination of elec-
trons with bound holes, while exciting another electron to
high kinetic energy.

The kinetic-energy states are quantized in the z direc-
tion. For a quantum well with walls of infinite height, the
possible energies and eigenfunctions are

'2



QUASI-FERMI-LEVELS IN QUANTUM-WELL PHOTOLUMINESCENCE 3153

cos(vrz/L). However, in the Auger process, one electron
is excited to states of high kinetic energy. This high ener-
gy permits the electron to be in many possible subbands
with di6'erent values of n. Here we shall calculate the
transition to the final state in the symmetric subband.
The calculation to the antisymmetric subband is similar.

The main part of the calculation is the evaluation of
the Coulomb matrix element:

3 3d r)d r2V=,
, Q~ +q(r2)gk (r~)g„(r))gq (r, ),

Ep ~r, —r2~ 1

(24)

aZ —tr —z, I/~
t/r„(r)=N(i, ,z;)cos e (25)

g„(r)=
' 1/2

2
I.A

cos (2n + 1) e'"'~ .7TZ

I. (26)

In the wave functions with two-dimensional wave vector
k, the state with n =1 is used except for gz + . First,

W, +q
evaluate the integral over d r2, which gives

V=N(l, , z;)
2

3/2
JTZ ]

7'i cos e
2&p I.

—
~r&

—z,. ~/A, i(k& —q) p 4~ 4m
e ' ' cos(8„z, ) +cos(8„+,z& )q2+ g2 q2+ g2

2&n0„=

(27)

(28)

,
3/2 J J271'e

N(~ )
2 n + n+1

&p LA q +O„q +0

J„(z;,A.,k&
—q)= f d r e ' cos cos(8„z)e (30)

The remaining integral is similar to J(z, , l, , k) in (15); the difference is the additional factor of cos(8„z, ). This factor ac-
tually reduces the integral by a significant amount for large values of n. This integral we call Jn. The matrix element
for the Auger process is

(29)

J J
n q +n q +n+1

2

k +
2m ' I

L

Ek + = (kz+q) +E„
2m,

The rate of Auger transitions (cm s ') is given by the golden rule

d k)d k2d qw~= N (A, ,z, )f n, (k, )n, (k2)

2'2
2 ITe

Ep

2

6(e E~+EI, +Ek s—
k ~ ),

(31)

(32)

(q +8„) .
2mc

(33)

There should also be a factor 1—n, to ensure that the
final state k2+q is unoccupied. However, this state is al-
ways empty, since its kinetic energy is approximately the
energy gap cg.

The numerical value of this expression is estimated by
making some drastic assumptions. The wave vectors k&

and k2 are assumed to be quite small compared with q.
The integrals over d k

&
and d k2 just give the density of

particles. When n is large, the di6'erence between n and
n +1 can be ignored. These approximations bring us to
the expression

(34)

2 4 /4Eo
1 1677 e fl

ee ~Qmc ~g n =p
(35)

This expression would have to be evaluated numerically
for an accurate answer. The important factor is Jn,
which we estimate to be
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Snk,

[ 1 +A2(q2+@2 )]2
(36)

n/, (n, +n/, )N„'

sh
(41)

2ftl E,g

2

(37)
shA

1 4172e4/(N2J2)

m, e+„I. (42)

See

1024m e (N )

flE0EgL A,

9/2
$2

2f7l Cg
(38)

n, X~w„= (n, +n/, ) .
See

(39)

Another process is the excitation of a bound hole to high
kinetic energy. The evaluation of this term requires a
knowledge of the correlation between positions of the ac-
ceptors. Two bound holes are involved: one is recom-
bined with an electron, and the other is excited. They in-
itially must start on different acceptor sites. So this term
can only be evaluated with a knowledge of these correla-
tions. Since the acceptors are dilute, and far apart on the
average, we assume the process involving two bound
holes can be neglected.

One way to understand this expression is to compare it
with the radiative recombination to bound holes. The ra-
tio of these two processes, from (18), (38), and (39) is

2w„384vr (m, c ) Ak

2 9/2

X (n, +n/, ) . (40)2' cg A,

Using numbers for GaAs, with KG=1.5 eV, ED=0.01
eV, E~ =0.03 eV, n, A' ~/I, =0.03 eV, and J=4m.A. , the
ratio w„/w// is about O(1). Thus the two decay rates
are comparable when the quasi-Fermi-level is 20—30
meV. The Auger decay is negligible for quasi-Fermi-
levels less than this.

This estimate causes the quantity J„ to be independent of
n. Then the summation is given by J„ time the number
of terms. The final result for the Auger rate s„in units of
s/cm is given above. We assume that a similar rate of
Auger decay applies to the process where a free hole is
excited to high kinetic energy. The total rate of Auger
decay, for exciting either a free electron or a free hole, is

The symbol Nz denotes the density of ionized acceptors.
This Auger process becomes important as the density nh

of free holes increases. The other process for capturing
holes at ionized acceptors has the excess hole energy dis-
sipated through the emission of one or several phonons.
We estimate this phonon process to be smaller, although
this estimate can vary considerably from solid to solid.
The important factor is the value of the phonon density
of states at the energy of the acceptor binding energy.
The phonon process is important only if this density of
states is large.

dn
rI

dt w n +n0 SeA
(43)

The second term on the right is the recombination of free
electrons and holes. We have provided a rough interpola-
tion between the Maxwell-Boltzmann result (8) and the
Fermi-Dirac result (12) by writing the rate as proportion-
al to n, n/, /(n, +no). We assume a steady state, so that
the time derivative is zero. This conforms to the typical
experimental arrangement, where the excitation is by a
cw laser. We assume that n, =nh, and the solution to the
above equation for the density of electrons in the conduc-
tion band is

n, = tI/Io —g+ [(/+I/Io) +4I/Io]'
2 1+

(44)

III. RATE EQUATIONS

The interband absorption creates free electrons and
holes. The electrons can emit photons by recombining
with holes which are either free or bound to acceptors.
Here we write the rate equations for the change in con-
centration of free electrons assuming that only these two
recombination processes are important. We initially
neglect the Auger process. We also assume, for this ini-
tial discussion, that all of the acceptors are neutral:

=2N~ ((NJ) ),
SeA

(45)

F. Hole capture by ionized acceptors

The main radiative decay mode is the recombination of
electrons with holes bound to acceptors. This process
makes the acceptors become ionized. Free holes from the
valence band will become captured in acceptor states at
these ionized acceptors. The energy lost by the holes, in
this process, is transferred either to phonons or to other
particles. The latter is another kind of Auger process.
The excess energy in the Auger process is dissipated by
exciting either a free electron or a free hole. It can be es-
timated using (35) with n =0 and e replaced by Ez.
The result is reduced by a factor of 4 if we neglect the
J„+&

term (with n =0) in (28),

noI =
0

~x ~r

Co N k~ T fPle

3m c ~p
(46)

where b is defined in (11). There are two key parameters
in this expression. The factor I0 has units of intensity.
For GaAs at T=4 K we find I0=20 W/cm assuming
that the effective-mass factor is b =

—,'. The second impor-
tant parameter g depends upon the density of acceptors.
For acceptors in GaAS we estimate that
2((NJ) ) =100/(, =10 ' cm . Therefore /=0. 01 when
the acceptor density has a low value such as Xz =10'
cm . In this case the solution has three kinds of behav-
ior.
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(i) 1 )g )4I/Io: Here the solution of (44) is given ap-
proximately by n, =noI/Iog This solution applies at
very low light intensities where the densities of electrons
and free holes are very small. Most of the holes are
bound to acceptors, so electrons emit photons by recom-
bining with bound holes. The density of free electrons is
given by equating mlI =m~.

(ii) 1 & 4I/Io )g: Here the solution to (44) is given ap-
proximately by n, = n o "(/ I /I p. Now the electrons
recombine mostly with the free holes according to
Maxwell-Boltzmann statistics. The results are obtained

by setting wII =w, in (8) with nh =n, .
(iii) 4I/Io ) 1: Here the solution to (44) is given as ap-

proximately n, =n, oI/Io=~ mrl. The electrons recom-
bine with the free holes, but one uses the Fermi-Dirac ex-

pression (12) for the transition rate.

Figure 1 shows a graph of this behavior. We have plotted
ln( n, /no ) versus ln(I /Io ) for the cases that
(=0.1, 1.0, 10.0. The first case corresponds to the
present discussion, and is the top curve in the figure. At
the lowest values of I/Io, the curve has a slope of 1. At
intermediate values, the curve flattens when n, = t/I. At
the largest intensity values, the curve is linear again.

The other two cases in the figure have large g values,
which means that there is a larger concentration of ac-
ceptors N„. These cases lack a region where n, =&I.
That is, there is no region where electrons recombine
with free holes according to Maxwell-Boltzmann statis-
tics. For g& 1, electrons recombine with bound holes at
low intensity, and with free holes using Fermi-Dirac
statistics at higher intensities.

In order to have the quasi-Fermi-level of electrons be
20—30 meV, the density of free electrons in the conduc-
tion band has to be n =10' cm . At low temperatures,

the constant no is about 100 times smaller than this, and
n, & no for I &I,. Since experimental intensities are typi-
cally 1 W/cm &Io, we conclude that the quasi-Fermi-
level of electrons is of the order of 1 meV or less. In that
case, the Auger process for electron-hole recombination
is negligible.

Next we consider the process whereby the holes bound
to acceptors equilibrate with the free holes. We no longer
assume that n& =n„but try to determine the separate
values of these two densities. Let f be the fraction of ac-
ceptors which do not have holes in bound states:
nh~ = (1 f)LN—~ and N~ =fN„. The number of bound
holes nz~ is determined by the equation for conservation
of charge,

n~
—n, +nI~ =L

nh =n, +fLN„.
(47)

(48)

dn

dt

dnh

dt

n, nI,

n, +no

n ng

~„n, +no

n, N„(1 f)—
SeA

ns(n, +ns )fN„nh fN„
sp

(50)

For undoped semiconductors, the product LNz ——10
cm is very small. This is the maximum density of
bound holes. The number of unbound holes is larger
than this under moderate laser excitation. Since
0(f (1, we have that nh =n, whenever these densities
are much larger than LN~. For doped semiconductors,
then the product LN~ is much larger.

The rate equations for electrons and holes is presented
while neglecting the Auger decay of the electrons:

10

dngg

SAA

n, N„(1 f) nh(n, —+nz )fN„nh fN„—+ '+
SeA sp

(51)

0

lQ

0-

-10-

-20
-10 10

Equation (49) is similar to (43). They differ in the factor
of 1 f in the last term—, which allows for the fact that
some of the acceptors may be ionized. The rate constant
sh~ is for the Auger capture of free holes at ionized ac-
ceptors, while s is for the capture by giving the excess
energy to phonons. In a steady state, we set all three of
these equations to zero. They are not independent, since
subtracting the first two equations yields the third. The
three unknown variables (n„nh, f) are determined by
solving any of the above two equations with the con-
straint that nh =n, +fLN„. In general, these equations
are very nonlinear. We solve (51) and find

no
n, = (1 f (1+P+3fAH)—

4 H

FIG. 1. Log-log plot of the density of conduction-band elec-
trons as a function of the laser power. The density of conduc-
tion electrons is normalized to no defined in (10). The laser

power is normalized to Io defined in (46). The three curves have
/=0. 1,1.0, 10.0, for the three lines, with the smallest value for
the top line. Equation (44) is used to graph these lines. no

+ ( [ I f (1+P +3fAH) —]
—8AHf'(P+f AH) i'"), (52)

(53)
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(54)

(55)

For GaAs semiconductors, with quantum wells of width
L =100—200 A, we find that H=0(10 ). This large
number dominates the answer. The other constants are
generally less than unity. The above equation on1y has a
reasonable solution when f=1/H =(10 ). We con-
clude that only a small fraction of acceptors are ionized.
Any acceptors that are ionized by recombining with con-
duction electrons are quickly neutralized by the capture
of free holes. In that case, the solution we provided in
(44) should be accurate.

The results depend upon the density of acceptors. For
a large concentration of acceptors, the steady-state con-
centration of free electrons is proportional to the intensi-
ty of the laser excitation. This linearity is valid as for two
main processes: the conduction electrons recombine with
either free holes or with holes bound to acceptors.

For a very small density of acceptors, on the order
X~ =10' cm, the variation of electron density has a
more complex dependence upon the intensity of the laser.
The dependence is linear at high and low intensities, but
there is an intermediate regime where the dependence is
proportional to +I.

We find that the densities of conduction electrons are
small for laser intensities on the order of I =1 W/cm .
The quasi-Fermi-level is on the order of 1 meV. At low
temperatures, this low Fermi energy still requires Fermi-
Dirac statistics.
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