3,838 research outputs found

    Nonholonomic constraints in kk-symplectic Classical Field Theories

    Get PDF
    A kk-symplectic framework for classical field theories subject to nonholonomic constraints is presented. If the constrained problem is regular one can construct a projection operator such that the solutions of the constrained problem are obtained by projecting the solutions of the free problem. Symmetries for the nonholonomic system are introduced and we show that for every such symmetry, there exist a nonholonomic momentum equation. The proposed formalism permits to introduce in a simple way many tools of nonholonomic mechanics to nonholonomic field theories.Comment: 27 page

    Coherent delocalization: Views of entanglement in different scenarios

    Get PDF
    The concept of entanglement was originally introduced to explain correlations existing between two spatially separated systems, that cannot be described using classical ideas. Interestingly, in recent years, it has been shown that similar correlations can be observed when considering different degrees of freedom of a single system, even a classical one. Surprisingly, it has also been suggested that entanglement might be playing a relevant role in certain biological processes, such as the functioning of pigment-proteins that constitute light-harvesting complexes of photosynthetic bacteria. The aim of this work is to show that the presence of entanglement in all of these different scenarios should not be unexpected, once it is realized that the very same mathematical structure can describe all of them. We show this by considering three different, realistic cases in which the only condition for entanglement to exist is that a single excitation is coherently delocalized between the different subsystems that compose the system of interest

    Multivector Field Formulation of Hamiltonian Field Theories: Equations and Symmetries

    Full text link
    We state the intrinsic form of the Hamiltonian equations of first-order Classical Field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analyzed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between {\sl Cartan-Noether symmetries} and {\sl general symmetries} of the system is discussed. Noether's theorem is also stated in this context, both the ``classical'' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed.Comment: Some minor mistakes are corrected. Bibliography is updated. To be published in J. Phys. A: Mathematical and Genera

    A Generalization of Chetaev's Principle for a Class of Higher Order Non-holonomic Constraints

    Get PDF
    The constraint distribution in non-holonomic mechanics has a double role. On one hand, it is a kinematic constraint, that is, it is a restriction on the motion itself. On the other hand, it is also a restriction on the allowed variations when using D'Alembert's Principle to derive the equations of motion. We will show that many systems of physical interest where D'Alembert's Principle does not apply can be conveniently modeled within the general idea of the Principle of Virtual Work by the introduction of both kinematic constraints and variational constraints as being independent entities. This includes, for example, elastic rolling bodies and pneumatic tires. Also, D'Alembert's Principle and Chetaev's Principle fall into this scheme. We emphasize the geometric point of view, avoiding the use of local coordinates, which is the appropriate setting for dealing with questions of global nature, like reduction.Comment: 27 pages. Journal of Mathematical Physics (to zappear

    Higher-order Mechanics: Variational Principles and other topics

    Get PDF
    After reviewing the Lagrangian-Hamiltonian unified formalism (i.e, the Skinner-Rusk formalism) for higher-order (non-autonomous) dynamical systems, we state a unified geometrical version of the Variational Principles which allows us to derive the Lagrangian and Hamiltonian equations for these kinds of systems. Then, the standard Lagrangian and Hamiltonian formulations of these principles and the corresponding dynamical equations are recovered from this unified framework.Comment: New version of the paper "Variational principles for higher-order dynamical systems", which was presented in the "III Iberoamerican Meeting on Geometry, Mechanics and Control" (Salamanca, 2012). The title is changed. A detailed review is added. Sections containing results about variational principles are enlarged with additional comments, diagrams and summarizing results. Bibliography is update

    On the Hamilton-Jacobi Theory for Singular Lagrangian Systems

    Full text link
    We develop a Hamilton-Jacobi theory for singular lagrangian systems using the Gotay-Nester-Hinds constraint algorithm. The procedure works even if the system has secondary constraints.Comment: 36 page

    El rechazo del desarrollo sostenible : ¿una crítica justificada?

    Get PDF
    El concepto de desarrollo sostenible surge por vía negativa, como resultado de los análisis de la actual situación de emergencia planetaria, que amenaza gravemente el futuro de la humanidad, y se contrapone explícitamente al de crecimiento sostenido, radicalmente insostenible en un mundo finito. Pero este concepto ha sufrido graves desvirtuaciones en su manejo, dando lugar a críticas procedentes incluso de la educación ambiental. En la comunicación se describe la estrategia diseñada para hacer frente a los malentendidos en torno al desarrollo sostenible y se presentan los resultados obtenidos, que muestran la posibilidad de salir al paso de las interpretaciones distorsionadas, poniendo de manifiesto que entre Educación ambiental y Educación para la sostenibilidad no existe oposición, sino, muy al contrario, el mismo objetivo de hacer posible un futuro sostenible

    Design of a Software System to Support Value Education in Sports Through Gamification Techniques

    Get PDF
    Nowadays, it is quite common to find violent acts in grassroot sports, such as football. Almost every week, it is possible to find news about team supporters fighting against each other, or football players arguing aggressively to the referee. And the worst part in this story is that most of these acts are watched by children. In order to alleviate this situation and create awareness of the necessity to create educational programs to prevent violence in sports, the European Union has funded several projects focused on this area. One of this project is called SAVEit project, and its goal is to create and develop innovative educational tools to promote values in grassroot sports. This paper presents the software architecture designed in SAVEit project to achieve this goal. This architecture is mainly composed of a Learning Management System, where coaches will learn about the values; a Team Management Site, where coaches can evaluate the values acquired by the children of the teams; and finally, a Video Game that using gamification techniques will keep the motivation of children during the learning process
    corecore