47 research outputs found

    VE-statin/egfl7 Expression in Endothelial Cells Is Regulated by a Distal Enhancer and a Proximal Promoter under the Direct Control of Erg and GATA-2

    Get PDF
    Angiogenesis is the process by which new blood vessels arise from existing ones by the budding out of endothelial cell capillaries from the luminal side of blood vessels. Blood vessel formation is essential for organ development during embryogenesis and is associated with several physiological and pathological processes, such as wound healing and tumor development. The VE-statin/egfl7 gene is specifically expressed in endothelial cells during embryonic development and in the adult. We studied here the regulatory mechanisms that control this tissue-specific expression. RT-qPCR analyses showed that the specificity of expression of VE-statin/egfl7 in endothelial cells is not shared with its closest neighbor genes notch1 and agpat2 on the mouse chromosome 2. Chromatin-immunoprecipitation analysis of histone modifications at the VE-statin/egfl7 locus showed that the chromatin is specifically opened in endothelial cells, but not in fibroblasts at the transcription start sites. A 13 kb genomic fragment of promoter was cloned and analyzed by gene reporter assays which showed that two conserved regions are important for the specific expression of VE-statin/egfl7 in endothelial cells; a −8409/−7563 enhancer and the −252/+38 region encompassing the exon-1b transcription start site. The latter contains essential GATA and ETS-binding sites, as assessed by linker-scanning analysis and site-directed mutagenesis. An analysis of expression of the ETS and GATA transcription factors showed that Erg, Fli-1 and GATA-2 are the most highly expressed factors in endothelial cells. Erg and GATA-2 directly control the expression of the endogenous VE-statin/egfl7 while Fli-1 probably exerts an indirect control, as assessed by RNA interference and chromatin immunoprecipitation. This first detailed analysis of the mechanisms that govern the expression of the VE-statin/egfl7 gene in endothelial cells pinpoints the specific importance of ETS and GATA factors in the specific regulation of genes in this cell lineage

    The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    Get PDF
    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis

    Global yields, chemical compositions and antioxidant activities of clove basil (Ocimum gratissimum L.) extracts obtained by supercritical fluid extraction

    No full text
    Clove basil (Ocimum gratissimum) extracts were obtained with supercritical CO2. Clove basil was cultivated using 0, 4, 8 and 12 kg/m(2) of organic fertilizer and was harvested in four seasons: winter, spring, summer and autumn, in the Southern Hemisphere. The extracts' global yields were determined at 40C and 150 bar for samples from all cultivation conditions and harvesting seasons. For selected samples, the extracts' global yields at 40C were determined for pressures of 100, 150, 200, 250 and 300 bar. The extracts were analyzed by gas chromatography-flame ionization detector. Antioxidant activity (AA) was assessed using the coupled reaction of beta-caroteneand linolenic acid. The extracts' global yields varied from 0.91 to 1.79% (dry basis), and the AAs varied from 62 to 84% compared with the control beta-carotene. Eugenol and beta-selinene were the major compounds. The relative proportion of eugenol varied from 35 to 60%, while the content of beta-selinene remained approximately constant (11.5-14.1%, area). The other substances quantified in the extracts were 1,8 cineole, trans-caryophyllene and alpha-selinene.29554755

    Phytochemical characterization of essential oil from Ocimum selloi

    No full text
    Ocimum selloi Benth, a native plant of Brazil, has medicinal uses as anti-diarrheic, antispasmodic and anti-inflammatory product. The yield of essential oils of the inflorescences, containing flowers and seeds, was 0.6%, and the yield of leaves, collected in two different seasons, was 0.25% (June 2000) and 0.20% (January 2001), respectively. The essential oils of the inflorescences and leaves presented as major constituents trans-anethol (41.34%, 45.42%, 58.59%) and methyl chavicol (27.10%, 24.14%, 29.96%).74118318

    Supercritical fluid extraction from fennel (Foeniculum vulgare): global yield, composition and kinetic data

    No full text
    Supercritical fluid extraction (SFE) from solids has proven to be technically feasible for almost any system; nonetheless, its economical viability has been proven for a restricted number of systems. A common practice is to compare the cost of manufacturing of vegetable extracts by a variety of techniques without deeply considering the huge differences in composition and functional properties among the various types of extracts obtained; under this circumstance, the cost of manufacturing do not favor SFE. Additionally, the influence of external parameters such as the agronomic conditions and the SFE system geometry are not considered. In the present work, these factors were studied for the system fennel seeds + CO2. The effects of the harvesting season and the degree of maturation on the global yields for the system fennel seeds + CO2 were analyzed at 300 bar and 40 degrees C. The effects of the pressure on the global yields were determined for the temperatures of 30 and 40 degrees C. Kinetics experiments were done for various ratios of bed height to bed diameter. Fennel extracts were also obtained by hydrodistillation and low-pressure solvent extraction. The chemical composition of the fennel extracts were determined by gas chromatography. The SFE maximum global yield (12.5%, dry basis) was obtained with dry harvested fennel seeds. Anethole and fenchone were the major constituents of the extract; the following fat acids palmitic (C16H32O2), palmitoleic stearic (C18H36O2), oleic (C18H34O2), linoleic (C18H32O2) and linolenic (C18H30O2) were also detected in the extracts. A relation between amounts of feed and solvent, bed height and diameter, and solvent flow rate was proposed. The models of Sovova, Goto et al. and Tan and Lion were capable of describing the mass transfer kinetics. (c) 2005 Elsevier B.V. All rights reserved.35321221
    corecore