474 research outputs found

    Surface free energy analysis of electrospun fibers based on Rayleigh-Plateau/Weber instabilities

    Get PDF
    Electrospinning is an increasingly common technique used to produce fibers with a range of diameters. These electrospun fibers are used extensively in applications that exploit the material’s high surface area to volume ratio, thus requiring detailed knowledge of the surface properties of the fibers. The surface free energy of individual free standing electrospun styrene-butadiene rubber (SBR) fibers was determined here from the time-dependent break-up of long fibers driven initially by Rayleigh-Plateau/Weber instabilities. Individual free standing electrospun rubber fibers were observed to change from a cylindrical fibrous geometry to semi-spherical droplets during a time period of several days when above the glass transition temperature of the polymer. A wave-like transition from fiber to droplet was attributed to a surface tension driven break-up process occurring over a time strongly influenced by the rubber's viscosity. The surface free energy for an electrospun rubber fiber was found using a Weber approach for the free standing fibers and Diez et al theory for dynamic fluid instability of fluid ridges. Both methods lead to similar values of fiber surface free energy and were confirmed from bulk measurements exploiting Owens-Wend theory. The approach presented here is powerful as the surface free energy, indicative of the physical and chemical behavior of the fiber surface, can be determined for any fiber diameter provided the geometric break-up of the fiber is observed

    Getting into hot water:sick guppies frequent warmer thermal conditions

    Get PDF
    Ectotherms depend on the environmental temperature for thermoregulation and exploit thermal regimes that optimise physiological functioning. They may also frequent warmer conditions to up-regulate their immune response against parasite infection and/or impede parasite development. This adaptive response, known as ‘behavioural fever’, has been documented in various taxa including insects, reptiles and fish, but only in response to endoparasite infections. Here, a choice chamber experiment was used to investigate the thermal preferences of a tropical freshwater fish, the Trinidadian guppy (Poecilia reticulata), when infected with a common helminth ectoparasite Gyrodactylus turnbulli, in female-only and mixed-sex shoals. The temperature tolerance of G. turnbulli was also investigated by monitoring parasite population trajectories on guppies maintained at a continuous 18, 24 or 32 °C. Regardless of shoal composition, infected fish frequented the 32 °C choice chamber more often than when uninfected, significantly increasing their mean temperature preference. Parasites maintained continuously at 32 °C decreased to extinction within 3 days, whereas mean parasite abundance increased on hosts incubated at 18 and 24 °C. We show for the first time that gyrodactylid-infected fish have a preference for warmer waters and speculate that sick fish exploit the upper thermal tolerances of their parasites to self medicate

    IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.

    Get PDF
    Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    The socio-technical organisation of community pharmacies as a factor in the Electronic Prescription Service Release Two implementation: a qualitative study

    Get PDF
    Background The introduction of a new method of transmitting prescriptions from general practices to community pharmacies in England (Electronic Prescription Service Release 2 (EPS2)) has generated debate on how it will change work practice. As EPS2 will be a key technical element in dispensing, we reviewed the literature to find that there were no studies on how social and technical elements come together to form work practice in community pharmacies. This means the debate has little point of reference. Our aim therefore was to study the ways social and technical elements of a community pharmacy are used to achieve dispensing through the development of a conceptual model on pharmacy work practice, and to consider how a core technical element such the EPS2 could change work practice. Method We used ethnographic methods inclusive of case-study observations and interviews to collect qualitative data from 15 community pharmacies that were in the process of adopting or were soon to adopt EPS2. We analysed the case studies thematically and used rigorous multi-dimensional and multi-disciplinary interpretive validation techniques to cross analyse findings. Results In practice, dispensing procedures were not designed to take into account variations in human and technical integration, and assumed that repetitive and collective use of socio-technical elements were at a constant. Variables such as availability of social and technical resources, and technical know-how of staff were not taken into account in formalised procedures. Yet community pharmacies were found to adapt their dispensing in relation to the balance of social and technical elements available, and how much of the social and technical elements they were willing to integrate into dispensing. While some integrated as few technical elements as possible, some depended entirely on technical artefacts. This pattern also applied to the social elements of dispensing. Through the conceptual model development process, we identified three approaches community pharmacies used to appropriate procedures in practice. These were ‘technically oriented’, ‘improvising’ or ‘socially oriented’. Conclusion We offer a model of different work approaches community pharmacies use to dispense, which suggests that when adopting a core technical element such as the EPS2 system of dispensing there could be variations in its successful adoption. Technically oriented pharmacies might find it easiest to integrate a similar artefact into work practice although needs EPS2 to synchronise effectively with existing technologies. Pharmacies adopting an improvising-approach have the potential to improve how they organise dispensing through EPS2 although they will need to improve how they apply their operating procedures. Socially oriented pharmacies will need to dramatically adapt their approach to dispensing since they usually rely on few technical tools

    Genetic Impact of a Severe El Niño Event on Galápagos Marine Iguanas (Amblyrhynchus cristatus)

    Get PDF
    The El Niño-Southern Oscillation (ENSO) is a major source of climatic disturbance, impacting the dynamics of ecosystems worldwide. Recent models predict that human-generated rises in green-house gas levels will cause an increase in the strength and frequency of El Niño warming events in the next several decades, highlighting the need to understand the potential biological consequences of increased ENSO activity. Studies have focused on the ecological and demographic implications of El Niño in a range of organisms, but there have been few systematic attempts to measure the impact of these processes on genetic diversity in populations. Here, we evaluate whether the 1997–1998 El Niño altered the genetic composition of Galápagos marine iguana populations from eleven islands, some of which experienced mortality rates of up to 90% as a result of El Niño warming. Specifically, we measured the temporal variation in microsatellite allele frequencies and mitochondrial DNA diversity (mtDNA) in samples collected before (1991/1993) and after (2004) the El Niño event. Based on microsatellite data, only one island (Marchena) showed signatures of a genetic bottleneck, where the harmonic mean of the effective population size (Ne) was estimated to be less than 50 individuals during the period between samplings. Substantial decreases in mtDNA variation between time points were observed in populations from just two islands (Marchena and Genovesa). Our results suggests that, for the majority of islands, a single, intense El Niño event did not reduce marine iguana populations to the point where substantial neutral genetic diversity was lost. In the case of Marchena, simultaneous changes to both nuclear and mitochondrial DNA variation may also be the result of a volcanic eruption on the island in 1991. Therefore, studies that seek to evaluate the genetic impact of El Niño must also consider the confounding or potentially synergistic effect of other environmental and biological forces shaping populations

    Limited genetic variation and structure in softshell clams (Mya arenaria) across their native and introduced range

    Get PDF
    Author Posting. © Springer, 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Conservation Genetics 10 (2009): 803-814, doi:10.1007/s10592-008-9641-y.To offset declines in commercial landings of the softshell clam, Mya arenaria, resource managers are engaged in extensive stocking of seed clams throughout its range in the northwest Atlantic. Because a mixture of native and introduced stocks can disrupt locally adapted genotypes, we investigated genetic structure in M. arenaria populations across its current distribution to test for patterns of regional differentiation. We sequenced mitochondrial cytochrome oxidase I (COI) for a total of 212 individuals from 12 sites in the northwest Atlantic (NW Atlantic), as well as two introduced sites, the northeast Pacific (NE Pacific) and the North Sea and Europe (NS Europe). Populations exhibited extremely low genetic variation, with one haplotype dominating (65-100%) at all sites sampled. Despite being introduced in the last 150-400 years, both NE Pacific and NS Europe populations had higher diversity measures than those in the NW Atlantic and both contained private haplotypes at frequencies of 10% to 27% consistent with their geographic isolation. While significant genetic structure (FST = 0.159, p<0.001) was observed between NW Atlantic and NS Europe, there was no evidence for genetic structure across the pronounced environmental clines of the NW Atlantic. Reduced genetic diversity in mtDNA combined with previous studies reporting reduced genetic diversity in nuclear markers strongly suggests a recent population expansion in the NW Atlantic, a pattern that may result from the retreat of ice sheets during Pleistocene glacial periods. Lack of genetic diversity and regional genetic differentiation suggests that present management strategies for the commercially important softshell clam are unlikely to have a significant impact on the regional distribution of genetic variation, although the possibility of disrupting locally adapted stocks cannot be excluded.This work was supported by NSF grants OCE-0326734 and OCE-0215905 to L. Mullineaux and OCE- 0349177 (Biological Oceanography) to PHB
    corecore