13,025 research outputs found

    Structural evaluation of concrete expanded polystyrene sandwich panels for slab applications

    Get PDF
    Sandwich panels are being extensively and increasingly used in building construction because they are light in weight, energy efficient, aesthetically attractive and can be easily handled and erected. This paper presents a structural evaluation of Concrete-Expanded Polystyrene (CEPS) sandwich panels for slab applications using finite element modeling approach. CEPS panels are made of expanded polystyrene foam sandwiched between concrete skins. The use of foam in the middle of sandwich panel reduces the weight of the structure and also acts as insulation against thermal, acoustics and vibration. Applying reinforced concrete skin to both sides of panel takes the advantages of the sandwich concept where the reinforced concrete skins take compressive and tensile loads resulting in higher stiffness and strength and the core transfers shear loads between the faces. This research uses structural software Strand7, which is based on finite element method, to predict the load deformation behaviour of the CEPS sandwich slab panels. Non linear static analysis was used in the numerical investigations. Predicted results were compared with the existing experimental results to validate the numerical approach used

    Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Hierarchical Multiscale Interactions During the Formation of Tropical Cyclone Nargis(2008)

    Get PDF
    Very severe cyclonic storm Nargis devastated Burma (Myanmar) in May 2008, caused tremendous damage and numerous fatalities, and became one of the 10 deadliest tropical cyclones (TCs) of all time. To increase the warning time in order to save lives and reduce economic damage, it is important to extend the lead time in the prediction of TCs like Nargis. As recent advances in high-resolution global models and supercomputing technology have shown the potential for improving TC track and intensity forecasts, the ability of a global mesoscale model to predict TC genesis in the Indian Ocean is examined in this study with the aim of improving simulations of TC climate. High-resolution global simulations with real data show that the initial formation and intensity variations of TC Nargis can be realistically predicted up to 5 days in advance. Preliminary analysis suggests that improved representations of the following environmental conditions and their hierarchical multiscale interactions were the key to achieving this lead time: (1) a westerly wind burst and equatorial trough, (2) an enhanced monsoon circulation with a zero wind shear line, (3) good upper-level outflow with anti-cyclonic wind shear between 200 and 850 hPa, and (4) low-level moisture convergence

    Embedding Retrieval of Articulated Geometry Models

    Get PDF

    Lightcone reference for total gravitational energy

    Get PDF
    We give an explicit expression for gravitational energy, written solely in terms of physical spacetime geometry, which in suitable limits agrees with the total Arnowitt-Deser-Misner and Trautman-Bondi-Sachs energies for asymptotically flat spacetimes and with the Abbot-Deser energy for asymptotically anti-de Sitter spacetimes. Our expression is a boundary value of the standard gravitational Hamiltonian. Moreover, although it stands alone as such, we derive the expression by picking the zero-point of energy via a ``lightcone reference.''Comment: latex, 7 pages, no figures. Uses an amstex symbo

    On the Canonical Reduction of Spherically Symmetric Gravity

    Get PDF
    In a thorough paper Kuchar has examined the canonical reduction of the most general action functional describing the geometrodynamics of the maximally extended Schwarzschild geometry. This reduction yields the true degrees of freedom for (vacuum) spherically symmetric general relativity. The essential technical ingredient in Kuchar's analysis is a canonical transformation to a certain chart on the gravitational phase space which features the Schwarzschild mass parameter MSM_{S}, expressed in terms of what are essentially Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we discuss the geometric interpretation of Kuchar's canonical transformation in terms of the theory of quasilocal energy-momentum in general relativity given by Brown and York. We find Kuchar's transformation to be a ``sphere-dependent boost to the rest frame," where the ``rest frame'' is defined by vanishing quasilocal momentum. Furthermore, our formalism is general enough to cover the case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing Kucha\v{r}'s original work for Schwarzschild black holes from the framework of hyperbolic geometry, we present new results concerning the canonical reduction of Witten-black-hole geometrodynamics.Comment: Revtex, 35 pages, no figure

    Entanglement and the nonlinear elastic behavior of forests of coiled carbon nanotubes

    Get PDF
    Helical or coiled nanostructures have been object of intense experimental and theoretical studies due to their special electronic and mechanical properties. Recently, it was experimentally reported that the dynamical response of foamlike forest of coiled carbon nanotubes under mechanical impact exhibits a nonlinear, non-Hertzian behavior, with no trace of plastic deformation. The physical origin of this unusual behavior is not yet fully understood. In this work, based on analytical models, we show that the entanglement among neighboring coils in the superior part of the forest surface must be taken into account for a full description of the strongly nonlinear behavior of the impact response of a drop-ball onto a forest of coiled carbon nanotubes.Comment: 4 pages, 3 figure

    Energy of Isolated Systems at Retarded Times as the Null Limit of Quasilocal Energy

    Get PDF
    We define the energy of a perfectly isolated system at a given retarded time as the suitable null limit of the quasilocal energy EE. The result coincides with the Bondi-Sachs mass. Our EE is the lapse-unity shift-zero boundary value of the gravitational Hamiltonian appropriate for the partial system Σ\Sigma contained within a finite topologically spherical boundary B=∂ΣB = \partial \Sigma. Moreover, we show that with an arbitrary lapse and zero shift the same null limit of the Hamiltonian defines a physically meaningful element in the space dual to supertranslations. This result is specialized to yield an expression for the full Bondi-Sachs four-momentum in terms of Hamiltonian values.Comment: REVTEX, 16 pages, 1 figur

    Entropy of Rotating Misner String Spacetimes

    Get PDF
    Using a boundary counterterm prescription motivated by the AdS/CFT conjecture, I evaluate the energy, entropy and angular momentum of the class of Kerr-NUT/bolt-AdS spacetimes. As in the non-rotating case, when the NUT charge is nonzero the entropy is no longer equal to one-quarter of the area due to the presence of the Misner string. When the cosmological constant is also non-zero, the entropy is bounded from above.Comment: Revtex, 9 pages, 3 figure
    • 

    corecore