38 research outputs found

    Gold(I)-Catalysed Direct Thioetherifications Using Allylic Alcohols: an Experimental and Computational Study

    Get PDF
    A gold(I)-catalysed direct thioetherification reaction between allylic alcohols and thiols is presented. The reaction is generally highly regioselective (S(N)2′). This dehydrative allylation procedure is very mild and atom economical, producing only water as the by-product and avoiding any unnecessary waste/steps associated with installing a leaving or activating group on the substrate. Computational studies are presented to gain insight into the mechanism of the reaction. Calculations indicate that the regioselectivity is under equilibrium control and is ultimately dictated by the thermodynamic stability of the products

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Food-Grade Titanium Dioxide Induces Toxicity in the Nematode <i>Caenorhabditis elegans</i> and Acute Hepatic and Pulmonary Responses in Mice

    No full text
    Food-grade titanium dioxide (E171) contains variable percentages of titanium dioxide (TiO2) nanoparticles (NPs), posing concerns for its potential effects on human and animal health. Despite many studies, the actual relationship between the physicochemical properties of E171 NPs and their interaction with biological targets is still far from clear. We evaluated the impact of acute E171 administration on invertebrate and vertebrate animals. In the nematode, Caenorhabditis elegans, the administration of up to 1.0 mg/mL of E171 did not affect the worm’s viability and lifespan, but significantly impaired its pharyngeal function, reproduction, and development. We also investigated whether the intravenous administration of E171 in mice (at the dose of 6 mg/kg/body weight) could result in an acute over-absorption of filter organs. A significant increase of hepatic titanium concentration and the formation of microgranulomas were observed. Interstitial inflammation and parenchymal modification were found in the lungs, coupled with titanium accumulation. This was probably due to the propensity of TiO2 NPs to agglomerate, as demonstrated by transmission electron microscopy experiments showing that the incubation of E171 with serum promoted the formation of compact clusters. Overall, these data emphasize the actual risk for human and animal exposure to E171

    Structure-based Drug Design of Novel, Potent and Selective Azabenzimidazoles (ABI) as ATR Inhibitors

    No full text
    Compound 13 was discovered through morphing of the ATR biochemical HTS hit 1. The ABI series was potent and selective for ATR. Incorporation of a 6-azaindole afforded a marked increase in cellular potency, but was associated with poor PK and hERG ion channel inhibition. DMPK experiments established that CYP P450 and AO metabolism in conjunction with Pgp and BCRP efflux were major causative mechanisms. The series also harbored the CYP3A4 TDI liability driven by the presence of both a morpholine and an indole moiety. Incorporation of an adjacent fluorine or nitrogen into the 6-azaindole solved most of the various medicinal chemistry issues encountered

    An optimised cellular automata model based on adaptive genetic algorithm for urban growth simulation

    No full text
    This paper presents an improved cellular automata (CA) model optimised using an adaptive genetic algorithm (AGA) to simulate the spatiotemporal processes of urban growth. The AGA technique was used to optimise the transition rules of the CA model defined through conventional logistic regression approach, resulting in higher simulation efficiency and improved results. Application of the AGA based CA model in Shanghai’s Jiading District, Eastern China demonstrates that the model was able to generate reasonable representation of urban growth even with limited input data in defining its transition rules. The research shows that AGA technique can be integrated within a conventional CA based urban simulation model to improve human understanding on urban dynamics

    Structure-Based Drug Design of Novel Potent and Selective Tetrahydropyrazolo[1,5‑<i>a</i>]pyrazines as ATR Inhibitors

    No full text
    A saturation strategy focused on improving the selectivity and physicochemical properties of ATR inhibitor HTS hit <b>1</b> led to a novel series of highly potent and selective tetrahydropyrazolo­[1,5-<i>a</i>]­pyrazines. Use of PI3Kα mutants as ATR crystal structure surrogates was instrumental in providing cocrystal structures to guide the medicinal chemistry designs. Detailed DMPK studies involving cyanide and GSH as trapping agents during microsomal incubations, in addition to deuterium-labeled compounds as mechanistic probes uncovered the molecular basis for the observed CYP3A4 TDI in the series
    corecore