1,285 research outputs found
Growth Rate in the Dynamical Dark Energy Models
Dark Energy models with slowly-rolling cosmological scalar field provide a
popular alternative to the standard, time-independent cosmological constant
model. We study simultaneous evolution of background expansion and growth in
the scalar field model with the Ratra-Peebles self-interaction potential. We
use recent measurements of the linear growth rate and the baryon acoustic
oscillation peak positions to constrain the model parameter that
describes the steepness of the scalar field potential.Comment: 7 pages, 6 figures, discussions and references added; conclusions
unchange
Topological features of hydrogenated graphene
Hydrogen adatoms are one of the most the promising proposals for the
functionalization of graphene. Hydrogen induces narrow resonances near the
Dirac energy, which lead to the formation of magnetic moments. Furthermore,
they also create local lattice distortions which enhance the spin-orbit
coupling. The combination of magnetism and spin-orbit coupling allows for a
rich variety of phases, some of which have non trivial topological features. We
analyze the interplay between magnetism and spin-orbit coupling in ordered
arrays of hydrogen on graphene monolayers, and classify the different phases
that may arise. We extend our model to consider arrays of adsorbates in
graphene-like crystals with stronger intrinsic spin-orbit couplings.Comment: 6 pages, 4 figure
Quantum spin Hall phase in multilayer graphene
The so called quantum spin Hall phase is a topologically non trivial
insulating phase that is predicted to appear in graphene and graphene-like
systems. In this work we address the question of whether this topological
property persists in multilayered systems. We consider two situations: purely
multilayer graphene and heterostructures where graphene is encapsulated by
trivial insulators with a strong spin-orbit coupling. We use a four orbital
tight-binding model that includes the full atomic spin-orbit coupling and we
calculate the topological invariant of the bulk states as well as the
edge states of semi-infinite crystals with armchair termination. For
homogeneous multilayers we find that even when the spin-orbit interaction opens
a gap for all the possible stackings, only those with odd number of layers host
gapless edge states while those with even number of layers are trivial
insulators. For the heterostructures where graphene is encapsulated by trivial
insulators, it turns out that the interlayer coupling is able to induce a
topological gap whose size is controlled by the spin-orbit coupling of the
encapsulating materials, indicating that the quantum spin Hall phase can be
induced by proximity to trivial insulators.Comment: 7 pages, 6 figure
Controlled complete suppression of single-atom inelastic spin and orbital cotunnelling
The inelastic portion of the tunnel current through an individual magnetic
atom grants unique access to read out and change the atom's spin state, but it
also provides a path for spontaneous relaxation and decoherence. Controlled
closure of the inelastic channel would allow for the latter to be switched off
at will, paving the way to coherent spin manipulation in single atoms. Here we
demonstrate complete closure of the inelastic channels for both spin and
orbital transitions due to a controlled geometric modification of the atom's
environment, using scanning tunnelling microscopy (STM). The observed
suppression of the excitation signal, which occurs for Co atoms assembled into
chain on a CuN substrate, indicates a structural transition affecting the
d orbital, effectively cutting off the STM tip from the spin-flip
cotunnelling path.Comment: 4 figures plus 4 supplementary figure
Cosmological Constraints from Hubble Parameter versus Redshift Data
We use the Simon, Verde, & Jimenez (2005) determination of the redshift
dependence of the Hubble parameter to constrain cosmological parameters in
three dark energy cosmological models. We consider the standard CDM
model, the XCDM parameterization of the dark energy equation of state, and a
slowly rolling dark energy scalar field with an inverse power-law potential.
The constraints are restrictive, consistent with those derived from Type Ia
supernova redshift-magnitude data, and complement those from galaxy cluster gas
mass fraction versus redshift data.Comment: Minor changes, including an estimate for H_0. ApJL, in pres
Chemical weathering of the volcanic soils of Isla Santa Cruz (GalĂĄpagos Islands, Ecuador)
We present a study on weathering of volcanic soils using 43 profiles (131 horizons) sampled in Santa Cruz Island (Galapagos Islands). Several weathering indices, based on chemical composition, are used. Since the geological material is highly homogeneous the intensity of weathering is mostly related to climatic conditions controlled by topography. There is a gradient of increasing weathering from the arid conditions predominant in the coast to elevations of 400-500 m a.s.l. where much more humid conditions prevail
Electrically controllable magnetism in twisted bilayer graphene
Twisted graphene bilayers develop highly localised states around AA-stacked
regions for small twist angles. We show that interaction effects may induce
either an antiferromagnetic (AF) and a ferromagnetic (F) polarization of said
regions, depending on the electrical bias between layers. Remarkably,
F-polarised AA regions under bias develop spiral magnetic ordering, with a
relative misalignment between neighbouring regions due to a
frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges
naturally without the need of spin-orbit coupling, and competes with the more
conventional lattice-antiferromagnetic instability, which interestingly
develops at smaller bias under weaker interactions than in monolayer graphene,
due to Fermi velocity suppression. This rich and electrically controllable
magnetism could turn twisted bilayer graphene into an ideal system to study
frustrated magnetism in two dimensions, with interesting potential also for a
range of applications.Comment: 7 pages, 3 figures. Minor correction
Real space mapping of topological invariants using artificial neural networks
Topological invariants allow to characterize Hamiltonians, predicting the
existence of topologically protected in-gap modes. Those invariants can be
computed by tracing the evolution of the occupied wavefunctions under twisted
boundary conditions. However, those procedures do not allow to calculate a
topological invariant by evaluating the system locally, and thus require
information about the wavefunctions in the whole system. Here we show that
artificial neural networks can be trained to identify the topological order by
evaluating a local projection of the density matrix. We demonstrate this for
two different models, a 1-D topological superconductor and a 2-D quantum
anomalous Hall state, both with spatially modulated parameters. Our neural
network correctly identifies the different topological domains in real space,
predicting the location of in-gap states. By combining a neural network with a
calculation of the electronic states that uses the Kernel Polynomial Method, we
show that the local evaluation of the invariant can be carried out by
evaluating a local quantity, in particular for systems without translational
symmetry consisting of tens of thousands of atoms. Our results show that
supervised learning is an efficient methodology to characterize the local
topology of a system.Comment: 9 pages, 6 figure
STB-VMM: Swin Transformer Based Video Motion Magnification
The goal of video motion magnification techniques is to magnify small motions
in a video to reveal previously invisible or unseen movement. Its uses extend
from bio-medical applications and deepfake detection to structural modal
analysis and predictive maintenance. However, discerning small motion from
noise is a complex task, especially when attempting to magnify very subtle,
often sub-pixel movement. As a result, motion magnification techniques
generally suffer from noisy and blurry outputs. This work presents a new
state-of-the-art model based on the Swin Transformer, which offers better
tolerance to noisy inputs as well as higher-quality outputs that exhibit less
noise, blurriness, and artifacts than prior-art. Improvements in output image
quality will enable more precise measurements for any application reliant on
magnified video sequences, and may enable further development of video motion
magnification techniques in new technical fields.Comment: Code available at: https://github.com/RLado/STB-VM
- âŠ