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Abstract Dark energy models with a slowly rolling cosmo-
logical scalar field provide a popular alternative to the stan-
dard, time-independent cosmological constant model. We
study the simultaneous evolution of background expansion
and growth in the scalar field model with the Ratra–Peebles
self-interaction potential. We use recent measurements of the
linear growth rate and the baryon acoustic oscillation peak
positions to constrain the model parameter α that describes
the steepness of the scalar field potential.

1 Introduction

Cosmological observations now convincingly show that the
expansion of the Universe is accelerating [1–4]. One of the
possible explanations of this empirical fact is that the energy
density of the Universe is dominated by the so-called dark
energy (DE) [5,6], a component with effective negative pres-
sure.

The simplest DE candidate is a time-independent cos-
mological constant �, and the corresponding cosmological
model, the so-called �CDM model, is considered to be a con-
cordance model. This simple model, however, suffers from
fine tuning and coincidence problems [7,8]. In the attempt
of constructing a more natural model of DE many alternative
scenarios have been proposed [9–15].

One of the alternatives to a cosmological constant are
the models of a dynamical scalar field. In these models a
spatially uniform cosmological scalar field, slowly rolling
down its almost flat self-interaction potential, plays the role
of a time-dependent cosmological constant. This family of
models avoid the fine tuning problem, having a more nat-
ural explanation for the observed low energy scale of DE
[17,18,39–41]. For the scalar field models (the so-called
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φCDM model) the equation of state Pφ = wρφ (with Pφ

and ρφ the pressure and energy density of the scalar field) is
time dependent, w = w(t), and unlike the cosmological con-
stant, w(t) �= −1, although at late-times it approaches −1.
When the scalar field energy density starts to dominate the
energy budget of the Universe, the Universe expansion starts
to accelerate [19,20]. Even though at low redshifts the pre-
dictions of the model are very close to the ones of the cosmo-
logical constant, the two models (�CDM and the dynamical
DE model) predict different observables over a wide range
of redshifts.

The scalar field models can be classified via their effec-
tive equation of state parameter. The models with −1 < w <

−1/3 are referred to as quintessence models, while the mod-
els with w < −1 are referred to as phantom models. The
quintessence models can be divided in two broad classes:
tracking quintessence, in which the evolution of the scalar
field is slow, and thawing quintessence, in which the evolu-
tion is fast compared to the Hubble expansion [21–24].

In tracking models the scalar field exhibits tracking solu-
tions in which the energy density of the scalar field scales
as the dominant component at the time; therefore the DE is
subdominant but closely tracks first the radiation and then
matter for most of the cosmic evolution. At some point in the
matter domination epoch the scalar field becomes dominant,
which results in its effective negative pressure and accel-
erated expansion [25,26]. The simplest example of such a
model is provided by a scalar field with an inverse-power-
law potential energy density Vφ ∝ φ−α , α > 0 [27], the
so-called Ratra–Peebles model.

The scalar field models predict a different background
expansion history and a growth rate compared to the cos-
mological constant model ones. Thus the scalar field model
can be distinguished from the �CDM model through high
precision measurements of distances and growth rates over
a wide redshift range [28–38].
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In this paper we study generic predictions of slowly rolling
scalar field models by taking the Ratra–Peebles model as
a representative example. We present a self-consistent and
effective way of solving the joint equations for the back-
ground expansion and the growth rate. We use a compilation
of recent growth rate and baryon acoustic oscillation (BAO)
peak measurements to put constraints on the parameter α

describing the steepness of the scalar field’s potential.
This paper is organized as follows. In Sect. 2 we inves-

tigate in detail the dynamics and the energy of the φCDM
models. In Sect. 3 we study the influence of the φCDM mod-
els on the growth factor of matter density perturbations. In
Sect. 4 a comparison is presented of the obtained theoretical
results with observational data. We discuss our results and
conclude in Sect. 5. We use the natural units with c = h̄ = 1
throughout this paper.

2 Background dynamics in φCDM models

2.1 Background equations

We assume the presence of a self-interacting scalar field φ

minimally coupled to gravity on cosmological scales. The
action of this scalar field is given by

S = M2
pl

16π

∫
d4x

[√−g

(
1

2
gμν∂μφ∂νφ − V (φ)

)]
, (1)

where Mpl = G−1/2 is the Planck mass, with G being the
Newtonian gravitational constant; V (φ) is the field’s poten-
tial. Note that in this presentation the scalar field φ is dimen-
sionless, and the potential V (φ) has the M2

pl dimension. Fol-
lowing [27] we will assume that the self-interacting potential
has a power-law functional form:

V = κ

2
M2

plφ
−α, (2)

where α > 0 is a model parameter that determines the steep-
ness of the scalar field potential. Compliance with current
observational data requires α ≤ 0.7 [39–41]. The larger value
of α induces the stronger time dependence of the equation
of state parameter wφ , while α=0 corresponds to the �CDM
case. Another model parameter κ > 0 is a positive dimen-
sionless constant which is related to α (see the appendix and
Ref. [42] for its dependence on α).

We assume the flat and isotropic Universe that is described
by the standard Friedmann–Lemaître–Robertson–Walker
homogeneous cosmological spacetime model (FLRW) ds2 =
−dt2 + a(t)2dx2, and we normalize the scale factor to be
equal to 1 at present time, atoday = a0 = 1, i.e. a = 1/(1+z),
where z is the redshift.

Using the action for the scalar field, Eq. (1), we obtain the
Klein–Gordon equation (equation of motion) for the scalar
field

φ̈ + 3H φ̇ + ∂V (φ)

∂φ
= 0, (3)

where an over-dot represents the derivative with the respect
of physical time t ; H(a) = H0 E(a) = ȧ/a is the Hubble
parameter and H0 is its value today.

The flatness of the Universe requires that the total energy
density of the Universe is equal to the critical energy density,
i.e. ρtot = ρcr = 3H2

0 M2
pl/(8π). We also introduce the energy

density parameters for each component as 
i = ρi/ρcr

(where the index i denotes the individual components, such
as radiation, matter or the scalar field).

The energy density and pressure of the scalar field are
given by

ρφ = M2
pl

32π

(
φ̇2/2 + V (φ)

)
, (4)

Pφ = M2
pl

32π

(
φ̇2/2 − V (φ)

)
. (5)

The corresponding equation of state is given by w =
(φ̇2/2 − V (φ))/(φ̇2/2 + V (φ)). It is clear that the require-
ment wtoday � −1 imposes the constraint φ̇2/2 � V (φ).

The first Friedmann equation implies

E2(a) = 
r0a−4 + 
m0a−3 + 
ν(a) + 
φ(a), (6)

where 
r0 and 
m0 are the radiation and matter (includ-
ing all non-relativistic components, except neutrinos, which
were relativistic at the early stages) density parameters today,
while 
ν is the total neutrino energy density which scales
as ∝ a−4 before neutrinos becoming non-relativistic, and
thereafter evolves as a−3. The scalar field energy density
parameter is given by


φ(a) = 1

12H2
0

(
φ̇2 + κ M2

plφ
−α

)
. (7)

To ensure the flatness of the Universe, we require that

m0 + 
ν0 = 1 − 
φ0, where 
ν0 and 
φ0 are the cur-
rent energy density parameters for neutrinos and the scalar
field, respectively. Since in the standard cosmological sce-
nario the neutrino density is believed to be negligible com-
pared to the matter and DE densities at low redshifts, we will
ignore this component in our computations from now on (as
well we neglect the radiation contribution to today’s energy
density).

2.1.1 Initial conditions

We integrate the set of equations Eqs. (3) and (6) numerically,
starting from a very early moment ain = 5 × 10−5 to the
present time a0 = 1. For the scalar field we assume the
following initial conditions:

123



Eur. Phys. J. C (2014) 74:3127 Page 3 of 8 3127

φin =
[

1

2
α(α + 2)

]1/2

a
4

α+2
in , (8)

φ′
in =

(
2α

α + 2

)1/2

a
2−α
2+α

in , (9)

where a prime denotes differentiation with respect to the scale
factor a. We also used a(t) ∝ t1/2 as consistent with a radia-
tion dominated epoch. These initial conditions were derived
from Eq. (3) (for details see Appendix A). We fix the val-
ues of the parameters, 
m0 = 0.315, 
φ0 = 0.685, h =
0.673, to the best-fit values obtained by Planck collaboration
[43].

2.1.2 The results of computations of the dynamics and the
energy of the φCDM model.

We present the background dynamics in the presence of the
scalar field DE on Figs. 1, 2, 3, and 4. The large values of the
α parameter imply larger values of the scalar field amplitude

Fig. 1 The scalar field amplitude φ(a) (top panel) and its time-
derivative φ̇(a) (bottom panel) for different values of the α parameter

Fig. 2 DE equation of state parameter w(a) (top panel) and its time-
derivative ẇ(a) (bottom panel) as a function of scale factor for different
values of the α parameter

φ(t) and its time derivative φ̇(t) at all redshifts. The large
values of the α parameter result also in the large values of w

and dw/da at all redshifts.
The evolution of the equation of state w(a) is presented

on Fig. 3. We find that for all values of the α parameter,
the Chevallier–Polarsky–Linder (CPL) parametrization of
the DE equation of state w(a) = w0 +wa(1−a) near a = 1
(where w0 = w(a = 1) and wa = (−dw/da)|a=1) [44–
46] provides a good approximation in the range of the scale
factor a = [0.98–1].

The evolution of E(a) for different values the α param-
eters is shown on Fig. 3. As we can expect the expansion
of the Universe occurs more rapidly with increasing value
of the α parameter, the �CDM limit corresponding to the
slowest rate of the expansion. The value of the α parame-
ters affects also the redshift of the equality between matter
and scalar field energy densities (see Fig. 4); with larger val-
ues of α the scalar field domination begins earlier and vice
versa.
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Fig. 3 On the top panel is shown w(a) for different values of α parame-
ter along with predictions computed from the CLP parametrization with
corresponding best-fit values for w0 and wa . On the bottom panel is
shown the normalized Hubble expansion rate E(a) for different model
parameters α

3 Growth factor of matter density perturbations
in dark energy models

We use the linear perturbation equations for matter overden-
sities [47,48] to describe the evolution of small overdensities
in a homogeneous expanding Universe,

δ
′′ +

(
3

a
+ E

′

E

)
δ

′ − 3
m,0

2a5 E2
δ = 0, (10)

where δ ≡ δρm/ρm , with ρm and δρm the density and over-
density of the matter component, respectively.

Following [47] we use the initial conditions δ(ain) =
δ

′
(ain) = 5 × 10−5, with ain = 5 × 10−5 as defined above.
We define by D(a) = δ(a)

δ(ai )
the linear growth rate, which

shows how much the perturbations have grown since initial
moment ain. We normalize the growth rate so that D(ain) =
1. The fractional matter density f1(a) ≡ 
m(a) as a function

Fig. 4 The second derivative of the scale factor (top panel) and energy
densities of 
m(a) (dashed lines) matter and 
φ(a) (solid lines) scalar
field (bottom panel) as functions of scale factor for different values of
the α parameter

of time is given by f1(a) = 
m0a−3/E2, and we define the
function f2(a), which describes the growth rate of the matter
perturbations, as a logarithmic derivative of linear growth rate
[49]: f2(a) = dlnD(a)/dlna. In �CDM cosmology the two
functions can are related by

f2(a) ≈ [ f1(a)]γ . (11)

The γ parameter is also referred to as the growth index
[50], and it depends on both the model of DE and the theory
of gravity. In general relativity (GR) the time dependence of
the γ index can be fit by [50]

γ = 0.55 + 0.05(1 + w0 + 0.5wa), if w0 ≥ −1. (12)

For the �CDM model (with w = −1), the growth index is
γ = 0.55 [50,51]. The φCDM model has been tested through
the growth rate in Ref. [52]. In more complex coupled dark
energy models, the growth rate has been studied in Refs.
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Fig. 5 On the top panel is shown the linear growth as D(a) as a func-
tion of scale factor for different values of the α parameter. On the bottom
panel is shown the logarithmic growth rate as a function of the scale fac-
tor for different values of the α parameter f2 (solid lines) along with the
predictions f γ

1 (dashed lines), computed for the corresponding best-fit
values of the γ parameter

[53–55]. The measured value of γ in conjunction with tight
constraints on the other cosmological parameter can be used
to test the validity of GR; see Refs. [56,57] for recent studies
to use the linear growth rate data to determine the deviation of
the theory of gravity on extragalactic scales from the standard
GR.

3.1 The results of computations of the growth factor of
matter density perturbations in φCDM dark energy
model

We present the solutions of the growth Eq. (10) in RP models
on Fig. 5.

We have checked that the power-law approximation
Eq. (11) works well for the scalar field DE. The effective
value of the growth index γ depends on α and is slightly
higher than the �CDM limit of 0.55 (Fig. 6).

Fig. 6 1σ and 2σ confidence level contours on parameters 
m and
α of φCDM model. On the top panel are shown the constraints we
obtained from the growth rate data [59]. On the bottom panel are shown
the constraints, obtained after adding BAO measurements and CMB
distance prior as in [60] for the BAO/CMB distance prior

4 Comparison with observations

TheφCDM models generically predict a faster expansion rate
and a slower rate of growth at low redshifts. Tight measure-
ments of the expansion rate, distance–redshift relationship
and the growth rate at multiple redshift ranges can be used to
simultaneously constrain the background dynamics and the
growth of structure and discriminate between φCDM and
�CDM models.

For the rest of this section we will concentrate specif-
ically on the discriminative power of the growth rate and
BAO measurements from galaxy surveys. For simplicity we
will assume that the spatial curvature is known precisely and

k = 0. Pavlov et al. [58] explored in detail the background
dynamics and the growth of structure of the generalized non-
flat φCDM model. We take a compilation of growth rate
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measurements from [59] and obtain a posterior likelihood
function of the parameters α and 
m . To do this we apply
the same method as [59]; we numerically solve Eq. (10) for
series of α and 
m values and compute a χ2 value,

χ2(α,
m) = [ fm − fth(α,
m)]2

σ 2
f

, (13)

where fm is the measured value of the growth rate, fth a
theoretically computed value, and σ 2

f one standard deviation
error of the measurement. Assuming that the likelihood is
Gaussian we have

Lf(α,
m) ∝ exp[−χ2(α,
m)/2]. (14)

The 1σ and 2σ confidence contours resulting from this
likelihood are presented on the top panel of Fig. 5. The like-
lihood contours in the α–
m plane obtained from the growth
rate data alone are highly degenerate. If we fix α = 0 we
get 
m = 0.278 ± 0.03, which is within 1σ of the best-fit
value obtained by the Planck collaboration [43]. Values of

m < 0.2 are ruled out at more than 2σ confidence level,
but large values of 
m are still allowed as long as α is large.

To break the degeneracy between the 
m and α param-
eters we now add a compilation of low-redshift BAO mea-
surements from [60]. We follow the same approach as [60];
we compute the angular distance

dA(z, α,
m, H0) = c
∫ z

0

dz′

H(z′, α,
m, H0)
, (15)

and a distance scale

DV (z, α,
m, H0)

= [d2
A(z, α,
m, H0)cz/H(z, α,
m, H0)]1/3, (16)

at a series of redshifts and construct a combination η(z) ≡
dA(zbao)/DV (zbao) where H(z) is the Hubble parameter and
H0 is a Hubble constant. Assuming Gaussianity of the error
bars we again compute the χ2,

χ2
bao = XTC−1 X (17)

and a likelihood function

Lbao(α,
m, H0) ∝ exp(−χ2
bao/2), (18)

where X = ηth − ηm and C is the covariance matrix of the
measurements. To marginalize over the parameter H0 in Lbao

we take a Gaussian prior of H0 = 74.3 ± 2.1 from [61]. We
assume that Lf and Lbao are independent and the combined
likelihood is simply a product of the two. The results are
presented on the bottom panel of Fig. 5. The addition of BAO
measurements breaks the degeneracy in the growth rate data.

m is now constrained to be within 0.26 < 
m < 0.34 at 1σ

confidence level. For the α parameter we get 0 ≤ α ≤ 1.3 at
1σ confidence level.

5 Discussion and conclusions

We explored observable predictions of the scalar field DE
model. We showed that the model differs from �CDM in a
number of ways that are generic and do not depend on the
specific values of model parameters. For example, in scalar
field models the expansion rate of the Universe is always
faster and the DE dominated epoch sets in earlier than in
�CDM model when other cosmological parameters are kept
fixed. The two models also differ in their predictions for the
growth rate, where the scalar field model generically predicts
a slower growth rate than �CDM.

We used a compilation of BAO, growth rate, and the dis-
tance prior from the CMB to constrain the model parameters
of the scalar field model. We find that if only the growth
rate data is used there is a strong degeneracy between 
m

and α, where higher values of α are allowed as long as the

m parameter is large as well. When combining these con-
straints with the constraints coming from a distance–redshift
relationship (BAO data and the distance prior from CMB)
the degeneracy is broken and we get 
m = 0.30 ± 0.04 and
α < 1.30 with a best-fit value of α = 0.00.
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Appendix A: Calculation of κ factor

In the appendix we calculate the κ factor following Sect. 3.6.3
of Ref. [42]. Let us represent the scale factor and the scalar
field φ(t) in the power-law forms,

a(t) = a�

(
t

t�

)n

, φ(t) = φ�

(
t

t�

)p

(19)

where a� ≡ a(t�) and φ� ≡ φ(t�) are the scale factor and the
scalar field values at t = t�. Equation (3) implies p = 2/(2+
α) (see for details Sect. 3.6.3 of Ref. [42]), and respectively,

φα+2
� = (α + 2)2

4(6n + 3nα − α)
καM2

plt
2
� . (20)

Using Eq. (19) with Eq. (20) with Eqs. (4) and (6), we
obtain
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ρ = 3n

8π

(
Mpl

t�

)2
φ2

�

α(α + 2)

(
t

t�

)−2α
α+2

(21)

(n

t

)2 = 8π

3M2
pl

ρ, (22)

where ρ ≡ ρφ and we assume that it is the energy density of a
single component that was dominant at t < t� in the Universe.
Assuming ρ(t) = ρ�(t/t�)β we get β = −2α/(α + 2). On
the other hand, assuming that the component energy density
is ρ� at a = a�, and accounting for the dominance of the
component at this epoch, we have

ρ = ρ�

(a�

a

) 2
n
, (23)

where n = 1/2 is for radiation and n = 2/3 for the mat-
ter dominant epochs. Expressing 1/t2 through Eq. (22), and
using Eq. (23) in Eq. (21) with assuming a = a�, ρ = ρ�,
we can derive φ2

� and comparing the obtained result with
Eq. (20), we find

κ = 32π

3nM4
pl

(
6n + 3nα − α

α + 2

)
[nα(α + 2)] α

2 ρ�. (24)

Plugging Eq. (24) in Eq. (20), and using Eq. (22), we
obtain

φ� = [nα(α + 2)] 1
2 , (25)

φ = [nα(α + 2)] 1
2

(
a

a�

) 2
n(α+2)

(26)

that simultaneously lead to initial conditions, Eqs. (8) and
(9) in the radiation dominated epoch with n = 1/2 through
assuming a� = a0.

Plugging Eq. (26) in Eq. (3),

κ = 4n

M2
plt

2
�

(
6n + 3nα − α

α + 2

)
[nα(α + 2)]α/2. (27)

Since Eq. (24) must be valid for any t�, we imply the
freedom of our choice and use t� = M−1

pl . Finally we have
for n = 1/2 and n = 2/3, respectively:

κ(n = 1/2) =
(

α + 6

α + 2

) [
1

2
α(α + 2)

]α/2

, (28)

κ(n = 2/3) = 8

3

(
α + 4

α + 2

)[
2

3
α(α + 2)

]α/2

. (29)
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