2,370 research outputs found

    Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    Get PDF
    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications

    Dorsal and ventral stimuli in sandwich-like microenvironments. Effect on cell differentiation

    Full text link
    While most of the in vivo extracellular matrices are 3D, most of the in vitro cultures are 2D--where only ventral adhesion is permitted--thus modifying cell behavior as a way to self-adaptation to this unnatural environment. We hypothesize that the excitation of dorsal receptors in cells already attached on a 2D surface (sandwich culture) could cover the gap between 2D and 3D cell-material interactions and result in a more physiological cell behavior. In this study we investigate the role of dorsal stimulation on myoblast differentiation within different poly(L-lactic acid) (PLLA) sandwich-like microenvironments, including plain material and aligned fibers. Enhanced cell differentiation levels were found for cells cultured with dorsal fibronectin-coated films. Seeking to understand the underlying mechanisms, experiments were carried out with (i) different types of dorsal stimuli (FN, albumin, FN after blocking the RGD integrin-binding site and activating dorsal cell integrin receptors), (ii) in the presence of an inhibitor of cell contractility, and (iii) increasing the frequency of culture medium changes to assess the effect of paracrine factors. Furthermore, FAK and integrin expressions, determined by Western blotting, revealed differences between cell sandwiches and 2D controls. Results show a stimuli-dependent response to dorsal excitation, proving that integrin outside-in signaling is involved in the enhanced cell differentiation. Due to their easiness and versatility, these sandwich-like systems are excellent candidates to get deeper insights into the study of 3D cell behavior and to direct cell fate within multilayer constructs.Contract grant sponsor: ERC - 306990Ballester Beltrán, J.; Lebourg, MM.; Salmerón Sánchez, M. (2013). Dorsal and ventral stimuli in sandwich-like microenvironments. Effect on cell differentiation. Biotechnology and Bioengineering. 11:3048-3058. https://doi.org/10.1002/bit.24972S3048305811Bajaj, P., Reddy, B., Millet, L., Wei, C., Zorlutuna, P., Bao, G., & Bashir, R. (2011). Patterning the differentiation of C2C12 skeletal myoblasts. Integrative Biology, 3(9), 897. doi:10.1039/c1ib00058fBallester-Beltrán, J., Cantini, M., Lebourg, M., Rico, P., Moratal, D., García, A. J., & Salmerón-Sánchez, M. (2011). Effect of topological cues on material-driven fibronectin fibrillogenesis and cell differentiation. Journal of Materials Science: Materials in Medicine, 23(1), 195-204. doi:10.1007/s10856-011-4532-zBallester-Beltrán, J., Lebourg, M., Rico, P., & Salmerón-Sánchez, M. (2012). Dorsal and Ventral Stimuli in Cell–Material Interactions: Effect on Cell Morphology. Biointerphases, 7(1), 39. doi:10.1007/s13758-012-0039-5Belkin, A. M., Zhidkova, N. I., Balzac, F., Altruda, F., Tomatis, D., Maier, A., … Burridge, K. (1996). Beta 1D integrin displaces the beta 1A isoform in striated muscles: localization at junctional structures and signaling potential in nonmuscle cells. The Journal of Cell Biology, 132(1), 211-226. doi:10.1083/jcb.132.1.211Bennett, A. M. (1997). Regulation of Distinct Stages of Skeletal Muscle Differentiation by Mitogen-Activated Protein Kinases. Science, 278(5341), 1288-1291. doi:10.1126/science.278.5341.1288Boonen, K. J. M., Langelaan, M. L. P., Polak, R. B., van der Schaft, D. W. J., Baaijens, F. P. T., & Post, M. J. (2010). Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering. Journal of Biomechanics, 43(8), 1514-1521. doi:10.1016/j.jbiomech.2010.01.039Chan, X. C. Y., McDermott, J. C., & Siu, K. W. M. (2007). Identification of Secreted Proteins during Skeletal Muscle Development. Journal of Proteome Research, 6(2), 698-710. doi:10.1021/pr060448kCharest, J. L., García, A. J., & King, W. P. (2007). Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials, 28(13), 2202-2210. doi:10.1016/j.biomaterials.2007.01.020Chatzizacharias, N. A., Kouraklis, G. P., & Theocharis, S. E. (2008). Disruption of FAK signaling: A side mechanism in cytotoxicity. Toxicology, 245(1-2), 1-10. doi:10.1016/j.tox.2007.12.003Chen, S.-E., Jin, B., & Li, Y.-P. (2007). TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK. American Journal of Physiology-Cell Physiology, 292(5), C1660-C1671. doi:10.1152/ajpcell.00486.2006Clegg, C. H., Linkhart, T. A., Olwin, B. B., & Hauschka, S. D. (1987). Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. The Journal of Cell Biology, 105(2), 949-956. doi:10.1083/jcb.105.2.949Clemente, C. F. M. Z., Corat, M. A. F., Saad, S. T. O., & Franchini, K. G. (2005). Differentiation of C2C12 myoblasts is critically regulated by FAK signaling. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289(3), R862-R870. doi:10.1152/ajpregu.00348.2004Cukierman, E. (2001). Taking Cell-Matrix Adhesions to the Third Dimension. Science, 294(5547), 1708-1712. doi:10.1126/science.1064829Cukierman, E., Pankov, R., & Yamada, K. M. (2002). Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology, 14(5), 633-640. doi:10.1016/s0955-0674(02)00364-2Haba, G. D. L., Cooper, G. W., & Elting, V. (1966). HORMONAL REQUIREMENTS FOR MYOGENESIS OF STRIATED MUSCLE IN VITRO: INSULIN AND SOMATOTROPIN. Proceedings of the National Academy of Sciences, 56(6), 1719-1723. doi:10.1073/pnas.56.6.1719Di Carlo, A., De Mori, R., Martelli, F., Pompilio, G., Capogrossi, M. C., & Germani, A. (2004). Hypoxia Inhibits Myogenic Differentiation through Accelerated MyoD Degradation. Journal of Biological Chemistry, 279(16), 16332-16338. doi:10.1074/jbc.m313931200Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126(4), 677-689. doi:10.1016/j.cell.2006.06.044Evinger-Hodges, M. J., Ewton, D. Z., Seifert, S. C., & Florini, J. R. (1982). Inhibition of myoblast differentiation in vitro by a protein isolated from liver cell medium. The Journal of Cell Biology, 93(2), 395-401. doi:10.1083/jcb.93.2.395Florini, J. R., & Magri, K. A. (1989). Effects of growth factors on myogenic differentiation. American Journal of Physiology-Cell Physiology, 256(4), C701-C711. doi:10.1152/ajpcell.1989.256.4.c701Florini, J. R., Ewton, D. Z., & Magri, K. A. (1991). Hormones, Growth Factors, and Myogenic Differentiation. Annual Review of Physiology, 53(1), 201-216. doi:10.1146/annurev.ph.53.030191.001221Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785House, M., Daniel, J., Elstad, K., Socrate, S., & Kaplan, D. L. (2012). Oxygen Tension and Formation of Cervical-Like Tissue in Two-Dimensional and Three-Dimensional Culture. Tissue Engineering Part A, 18(5-6), 499-507. doi:10.1089/ten.tea.2011.0309Hutmacher, D. W. (2010). Biomaterials offer cancer research the third dimension. Nature Materials, 9(2), 90-93. doi:10.1038/nmat2619Ingber, D. E. (2003). Tensegrity I. Cell structure and hierarchical systems biology. Journal of Cell Science, 116(7), 1157-1173. doi:10.1242/jcs.00359Ishii, I. (2001). Histological and functional analysis of vascular smooth muscle cells in a novel culture system with honeycomb-like structure. Atherosclerosis, 158(2), 377-384. doi:10.1016/s0021-9150(01)00461-0Kislinger, T., Gramolini, A. O., Pan, Y., Rahman, K., MacLennan, D. H., & Emili, A. (2005). Proteome Dynamics during C2C12 Myoblast Differentiation. Molecular & Cellular Proteomics, 4(7), 887-901. doi:10.1074/mcp.m400182-mcp200LI, Y.-P., & SCHWARTZ, R. J. (2001). TNF-α regulates early differentiation of C2C12 myoblasts in an autocrine fashion. The FASEB Journal, 15(8), 1413-1415. doi:10.1096/fj.00-0632fjeLiu, H., Niu, A., Chen, S.-E., & Li, Y.-P. (2011). β3-Integrin mediates satellite cell differentiation in regenerating mouse muscle. The FASEB Journal, 25(6), 1914-1921. doi:10.1096/fj.10-170449Lutolf MP Hubbell JA 2005 47 55Mancini, A., Sirabella, D., Zhang, W., Yamazaki, H., Shirao, T., & Krauss, R. S. (2011). Regulation of myotube formation by the actin-binding factor drebrin. Skeletal Muscle, 1(1), 36. doi:10.1186/2044-5040-1-36Meighan, C. M., & Schwarzbauer, J. E. (2008). Temporal and spatial regulation of integrins during development. Current Opinion in Cell Biology, 20(5), 520-524. doi:10.1016/j.ceb.2008.05.010O'Connell B 2002 Oval Profile Plot. Research Services Branch, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke. Available from http://rsbweb.nih.gov/ij/plugins/oval-profile.htmlPECKHAM, M. (2008). Engineering a multi-nucleated myotube, the role of the actin cytoskeleton. Journal of Microscopy, 231(3), 486-493. doi:10.1111/j.1365-2818.2008.02061.xQuach, N. L., & Rando, T. A. (2006). Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Developmental Biology, 293(1), 38-52. doi:10.1016/j.ydbio.2005.12.040Rasband WS ImageJ U.S. National Institutes of Health, Bethesda, Maryland, USA http://imagej.nih.gov/ij/1997-2012Ren, K., Crouzier, T., Roy, C., & Picart, C. (2008). Polyelectrolyte Multilayer Films of Controlled Stiffness Modulate Myoblast Cell Differentiation. Advanced Functional Materials, 18(9), 1378-1389. doi:10.1002/adfm.200701297Rimann, M., & Graf-Hausner, U. (2012). Synthetic 3D multicellular systems for drug development. Current Opinion in Biotechnology, 23(5), 803-809. doi:10.1016/j.copbio.2012.01.011Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057Sastry, S. K., Lakonishok, M., Wu, S., Truong, T. Q., Huttenlocher, A., Turner, C. E., & Horwitz, A. F. (1999). Quantitative Changes in Integrin and Focal Adhesion Signaling Regulate Myoblast Cell Cycle Withdrawal. The Journal of Cell Biology, 144(6), 1295-1309. doi:10.1083/jcb.144.6.1295Schlaepfer, D. D., Hanks, S. K., Hunter, T., & Geer, P. van der. (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 372(6508), 786-791. doi:10.1038/372786a0SCHOEN, R. C., BENTLEY, K. L., & KLEBE, R. J. (1982). Monoclonal Antibody Against Human Fibronectin Which Inhibits Cell Attachment. Hybridoma, 1(2), 99-108. doi:10.1089/hyb.1.1982.1.99Selinummi, J., Seppälä, J., Yli-Harja, O., & Puhakka, J. A. (2005). Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques, 39(6), 859-863. doi:10.2144/000112018Smith, A. S. T., Passey, S., Greensmith, L., Mudera, V., & Lewis, M. P. (2012). Characterization and optimization of a simple, repeatable system for the long term in vitro culture of aligned myotubes in 3D. Journal of Cellular Biochemistry, 113(3), 1044-1053. doi:10.1002/jcb.23437Streuli, C. H. (2008). Integrins and cell-fate determination. Journal of Cell Science, 122(2), 171-177. doi:10.1242/jcs.018945Tamada, Y., & Ikada, Y. (1993). Effect of Preadsorbed Proteins on Cell Adhesion to Polymer Surfaces. Journal of Colloid and Interface Science, 155(2), 334-339. doi:10.1006/jcis.1993.1044Tanaka, K., Sato, K., Yoshida, T., Fukuda, T., Hanamura, K., Kojima, N., … Watanabe, H. (2011). Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle & Nerve, 44(6), 968-977. doi:10.1002/mus.22224Tse, J. R., & Engler, A. J. (2011). Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate. PLoS ONE, 6(1), e15978. doi:10.1371/journal.pone.0015978Wakelam, M. J. (1985). The fusion of myoblasts. Biochemical Journal, 228(1), 1-12. doi:10.1042/bj2280001Wei, W.-C., Lin, H.-H., Shen, M.-R., & Tang, M.-J. (2008). Mechanosensing machinery for cells under low substratum rigidity. American Journal of Physiology-Cell Physiology, 295(6), C1579-C1589. doi:10.1152/ajpcell.00223.2008WEISS, P. (1959). Cellular Dynamics. Reviews of Modern Physics, 31(1), 11-20. doi:10.1103/revmodphys.31.11Yamada, K. M., Pankov, R., & Cukierman, E. (2003). Dimensions and dynamics in integrin function. Brazilian Journal of Medical and Biological Research, 36(8), 959-966. doi:10.1590/s0100-879x2003000800001Zelzer, M., Albutt, D., Alexander, M. R., & Russell, N. A. (2011). The Role of Albumin and Fibronectin in the Adhesion of Fibroblasts to Plasma Polymer Surfaces. Plasma Processes and Polymers, 9(2), 149-156. doi:10.1002/ppap.20110005

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore