550 research outputs found

    Cooperative mixing induced surface roughening in bilayer metals: a possible novel surface damage mechanism

    Full text link
    Molecular dynamics simulations have been used to study a collective atomic transport phenomenon by repeated Ar+^+ irradiations in the Ti/Pt interfacial system. The ion-induced injection of surface atoms to the bulk, the ejection of bulk atoms to the top layers together with surface erosion is strongly enhanced by interfacial mixing. This process leads to a dense interfacial material, and broadening of the interface region. The process scales with the relative difference of the atomic masses. We find that surface roughening and interfacial mixing is strongly coupled via an enhanced counterflow material transport normal to the surface which might be a novel surface damage mechanism. This cooperative phenomenon is active when the bilayer system is subjected to a high dose ion irradiation (multiple ion irradiations) and leads to surface cavity growth.Comment: 6 pages, 6 figures. accepted in Nucl. Instrum. Meth.

    Does the thermal spike affect low-energy ion-induced interfacial mixing?

    Full text link
    Molecular dynamics simulations have been used to obtain the three-dimensional distribution of interfacial mixing and cascade defects in Ti/Pt multilayer system due to single 1 keV Ar+Ar^+ impacts at grazing angle of incidence. The Ti/Pt system was chosen because of its relatively high heat of mixing in the binary alloy and therefore a suitable candidate for testing the effect of heat of mixing on ion-beam mixing. However, the calculated mixing profile is not sensitive to the heat of mixing. Therefore the thermal spike model of mixing is not fully supported under these irradiation conditions. Instead we found that the majority of mixing occurs after the thermal spike during the relaxation process. These conclusions are supported by liquid, vacancy as well as adatom analysis. The interfacial mixing is in various aspects anomalous in this system: the time evolution of mixing is leading to a phase delay for Ti mixing, and Pt exhibits an unexpected double peaked mixing evolution. The reasons to these effects are discussed.Comment: 7 pages, 12 figures, Nucl. Instr. Meth. B211, 524. (2003

    Vortices in simulations of solar surface convection

    Full text link
    We report on the occurrence of small-scale vortices in simulations of the convective solar surface. Using an eigenanalysis of the velocity gradient tensor, we find the subset of high vorticity regions in which the plasma is swirling. The swirling regions form an unsteady, tangled network of filaments in the turbulent downflow lanes. Near-surface vertical vortices are underdense and cause a local depression of the optical surface. They are potentially observable as bright points in the dark intergranular lanes. Vortex features typically exist for a few minutes, during which they are moved and twisted by the motion of the ambient plasma. The bigger vortices found in the simulations are possibly, but not necessarily, related to observations of granular-scale spiraling pathlines in "cork animations" or feature tracking.Comment: 11 pages, 13 figures, accepted for publication in A&A, complementary movies at http://www.mps.mpg.de/homes/moll/strudel/papermovies

    High-order aberration compensation with Multi-frame Blind Deconvolution and Phase Diversity image restoration techniques

    Full text link
    Context. For accurately measuring intensities and determining magnetic field strengths of small-scale solar (magnetic) structure, knowledge of and compensation for the point spread function is crucial. For images recorded with the Swedish 1-meter Solar Telescope, restoration with Multi-Frame Blind Deconvolution and Joint Phase Diverse Speckle methods lead to remarkable improvements in image quality but granulation contrasts that are too low, indicating additional stray light. Aims. We propose a method to compensate for stray light from high-order atmospheric aberrations not included in MFBD and JPDS processing. Methods. To compensate for uncorrected aberrations, a reformulation of the image restoration process is proposed that allows the average effect of hundreds of high-order modes to be compensated for by relying on Kolmogorov statistics for these modes. The applicability of the method requires simultaneous measurements of Fried's parameter r0. The method is tested with simulations as well as real data and extended to include compensation for conventional stray light. Results. We find that only part of the reduction of granulation contrast in SST images is due to uncompensated high-order aberrations. The remainder is still unaccounted for and attributed to stray light from the atmosphere, the telescope with its re-imaging system and to various high-altitude seeing effects. Conclusions. We conclude that statistical compensation of high-order modes is a viable method to reduce the loss of contrast occurring when a limited number of aberrations is explicitly compensated for with MFBD and JPDS processing. We show that good such compensation is possible with only 10 recorded frames. The main limitation of the method is that already MFBD and JPDS processing introduces high-order compensation that, if not taken into account, can lead to over-compensation.Comment: in press in Astronomy & Astrophysic

    The Quiet-Sun Photosphere and Chromosphere

    Full text link
    The overall structure and the fine structure of the solar photosphere outside active regions are largely understood, except possibly important roles of a turbulent near-surface dynamo at its bottom, internal gravity waves at its top, and small-scale vorticity. Classical 1D static radiation-escape modelling has been replaced by 3D time-dependent MHD simulations that come closer to reality. The solar chromosphere, in contrast, remains ill-understood although its pivotal role in coronal mass and energy loading makes it a principal research area. Its fine structure defines its overall structure, so that hard-to-observe and hard-to-model small-scale dynamical processes are the key to understanding. However, both chromospheric observation and chromospheric simulation presently mature towards the required sophistication. The open-field features seem of greater interest than the easier-to-see closed-field features.Comment: Accepted for special issue "Astrophysical Processes on the Sun" of Phil. Trans. Royal Soc. A, ed. C. Parnell. Note: clicking on the year in a citation opens the corresponding ADS abstract page in the browse

    An Efficient Molecular Dynamics Scheme for the Calculation of Dopant Profiles due to Ion Implantation

    Get PDF
    We present a highly efficient molecular dynamics scheme for calculating the concentration depth profile of dopants in ion irradiated materials. The scheme incorporates several methods for reducing the computational overhead, plus a rare event algorithm that allows statistically reliable results to be obtained over a range of several orders of magnitude in the dopant concentration. We give examples of using this scheme for calculating concentration profiles of dopants in crystalline silicon. Here we can predict the experimental profile over five orders of magnitude for both channeling and non-channeling implants at energies up to 100s of keV. The scheme has advantages over binary collision approximation (BCA) simulations, in that it does not rely on a large set of empirically fitted parameters. Although our scheme has a greater computational overhead than the BCA, it is far superior in the low ion energy regime, where the BCA scheme becomes invalid.Comment: 17 pages, 21 figures, 2 tables. See: http://bifrost.lanl.gov/~reed

    The energy of waves in the photosphere and lower chromosphere: III. Inversion setup for Ca II H spectra in local thermal equilibrium

    Full text link
    The Ca II H line is one of the strongest lines in the solar spectrum and provides continuous information on the solar atmosphere from the photosphere to the lower chromosphere. We describe an inversion approach that reproduces observed Ca II H spectra assuming LTE. We developed an inversion strategy based on the SIR code. The approach uses a two-step procedure with an archive of pre-calculated spectra to fit the line core and a subsequent iterative modification to improve the fit in the line wing. Simultaneous spectra in the 630nm range can optionally be used to fix the continuum temperature. The method retrieves 1D temperature stratifications neglecting lateral radiative transport. LOS velocities are included by an empirical approach. An archive of about 300.000 pre-calculated spectra is more than sufficient to reproduce the line core of observed Ca II H spectra both in quiet Sun and in active regions. The final thermodynamical stratifications match observed and best-fit spectra to a level of about 0.5 (1) % of Ic in the line wing (core). Inversion schemes based on pre-calculated spectra allow one a reliable and relatively fast retrieval of solar properties from observed chromospheric spectra. The approach can be easily extended to an 1D NLTE case by a simple exchange of the pre-calculated archive spectra.Comment: 15 pages, 15 figures, accepted for publication in A&A. The animation will only be provided in the A&A online sectio

    The energy of waves in the photosphere and lower chromosphere: IV. Inversion results of Ca II H spectra

    Full text link
    Most static 1D atmosphere models in the quiet Sun predict a rise of the gas temperature at chromospheric layers, but numerical simulations only yield an increase in the brightness temperature. We investigate the thermal structure in the solar chromosphere as derived from an LTE inversion of Ca II H spectra in QS and active regions. We investigate the temperature stratifications on differences between magnetic and field-free regions in the QS, and between QS and ARs. We determine the energy content of individual calcium bright grains (BGs). The rms temperature fluctuations are below 100 K in the photosphere and 200-300 K in the chromosphere. The average temperature stratification in the QS does not exhibit a clear chromospheric temperature rise, opposite to the AR case. We find an energy content of about 7*10E18 J for BGs that repeat with a cadence of about 160 secs. The precursors of BGs have a vertical extent of about 200 km and a horizontal extent of about 1 Mm. The comparison of observed with synthetic NLTE profiles confirms that the solar chromosphere in the QS oscillates between an atmosphere in radiative equilibrium and one with a moderate chromospheric temperature rise. Two-dimensional x-z temperature maps exhibit nearly horizontal canopy-like structures with a few Mm extent around photospheric magnetic field concentrations at a height of about 600 km. The large difference between QS regions and ARs, and the better match of AR and non-LTE reference spectra suggest that magnetic heating processes are more important than commonly assumed. The temperature fluctuations in QS derived by the LTE inversion do not suffice on average to maintain a stationary chromospheric temperature rise. The spatially and vertically resolved information on the temperature structure allows one to investigate in detail the topology and evolution of the thermal structure in the lower solar atmosphere.Comment: 16 pages, 16 figures + 1 page Appendix, accepted by A&
    • …
    corecore