11 research outputs found

    Atherosclerosis in young Brazilians suffering violent deaths: a pathological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atherosclerosis is the leading cause of coronary heart disease and ischemic stroke, which can cause sudden death in adulthood. In general, the clinical manifestations of cardiovascular diseases are caused by atherosclerosis, which is a process that starts during middle age. More recent studies indicate that the atherosclerotic process begins during childhood.</p> <p>Methods</p> <p>To evaluate the extent of atherosclerotic disease in young Brazilians, we conducted a study of the pathological alterations in the major arteries of victims of violent death. Samples of the right carotid artery, left coronary artery, and thoracic aorta of young victims of violent death were analyzed and graded in accordance with the histological atherosclerotic lesion types proposed by the American Heart Association. Samples were collected from 100 individuals who had died from external causes, aged from 12 to 33 years.</p> <p>Results</p> <p>The majority of cases (83%) were male, and 66% of deaths were homicides caused by firearms. The median age was 20.0 years and mean body mass index was 20.9 kg/m<sup>2</sup>. Of the right carotid artery specimens, 3% were normal, 55% had type I, 40% had type II, 1% had type III, and 1% had type IV atherosclerotic lesions. Of the left coronary artery specimens, 5% were normal, 48% had type I, 41% had type II, 3% had type III, and 3% had type IV lesions. Of the thoracic aorta specimens, none were normal, 13% had type I, 64% had type II, 22% had type III, and 1% had type IV lesions. Overall, 97.34% of arteries examined had some degree of atherosclerosis. The most common histological type was type II (foam cells). No thoracic aorta specimens were normal, and the coronary artery specimens had the most atherosclerosis.</p> <p>Conclusions</p> <p>Our results show a high prevalence of atherosclerotic lesions among young people in Brazil. Intervention should be undertaken to decrease the rate of sudden cardiac death in the adult population.</p

    Comparative phylogeography in the Atlantic forest and Brazilian savannas: pleistocene fluctuations and dispersal shape spatial patterns in two bumblebees

    Get PDF
    Background: Bombus morio and B. pauloensis are sympatric widespread bumblebee species that occupy two major Brazilian biomes, the Atlantic forest and the savannas of the Cerrado. Differences in dispersion capacity, which is greater in B. morio, likely influence their phylogeographic patterns. This study asks which processes best explain the patterns of genetic variation observed in B. morio and B. pauloensis, shedding light on the phenomena that shaped the range of local populations and the spatial distribution of intra-specific lineages. Results: Results suggest that Pleistocene climatic oscillations directly influenced the population structure of both species. Correlative species distribution models predict that the warmer conditions of the Last Interglacial contributed to population contraction, while demographic expansion happened during the Last Glacial Maximum. These results are consistent with physiological data suggesting that bumblebees are well adapted to colder conditions. Intra-specific mitochondrial genealogies are not congruent between the two species, which may be explained by their documented differences in dispersal ability. Conclusions: While populations of the high-dispersal B. morio are morphologically and genetically homogeneous across the species range, B. pauloensis encompasses multiple (three) mitochondrial lineages, and show clear genetic, geographic, and morphological differences. Because the lineages of B. pauloensis are currently exposed to distinct climatic conditions (and elevations), parapatric diversification may occur within this taxon. The eastern portion of the state of São Paulo, the most urbanized area in Brazil, represents the center of genetic diversity for B. pauloensis

    Phylogenomics and the rise of the angiosperms

    Get PDF
    Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade

    Phylogenomics and the rise of the angiosperms

    Get PDF
    International audienceAngiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods 1,2 . A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome 3,4 . Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins 5–7 . However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes 8 . This 15-fold increase in genus-level sampling relative to comparable nuclear studies 9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
    corecore