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RESEARCH ARTICLE Open Access

Comparative phylogeography in the
Atlantic forest and Brazilian savannas:
pleistocene fluctuations and dispersal
shape spatial patterns in two bumblebees
Elaine Françoso1*, Alexandre Rizzo Zuntini2, Ana Carolina Carnaval3,4 and Maria Cristina Arias1

Abstract

Background: Bombus morio and B. pauloensis are sympatric widespread bumblebee species that occupy two major
Brazilian biomes, the Atlantic forest and the savannas of the Cerrado. Differences in dispersion capacity, which is
greater in B. morio, likely influence their phylogeographic patterns. This study asks which processes best explain the
patterns of genetic variation observed in B. morio and B. pauloensis, shedding light on the phenomena that shaped
the range of local populations and the spatial distribution of intra-specific lineages.

Results: Results suggest that Pleistocene climatic oscillations directly influenced the population structure of both
species. Correlative species distribution models predict that the warmer conditions of the Last Interglacial
contributed to population contraction, while demographic expansion happened during the Last Glacial Maximum.
These results are consistent with physiological data suggesting that bumblebees are well adapted to colder
conditions. Intra-specific mitochondrial genealogies are not congruent between the two species, which may be
explained by their documented differences in dispersal ability.

Conclusions: While populations of the high-dispersal B. morio are morphologically and genetically homogeneous
across the species range, B. pauloensis encompasses multiple (three) mitochondrial lineages, and show clear genetic,
geographic, and morphological differences. Because the lineages of B. pauloensis are currently exposed to distinct
climatic conditions (and elevations), parapatric diversification may occur within this taxon. The eastern portion of the
state of São Paulo, the most urbanized area in Brazil, represents the center of genetic diversity for B. pauloensis.

Keywords: Comparative phylogeography, Bumblebee, Brazil, mtDNA, Microsatellites, Geographic distribution modeling

Background
Although the field of comparative phylogeography emerged
from studies of the role of common landscape or climatic
shifts on the distribution of genetic diversity across sympat-
ric species [1, 2], it has become clear that phylogeographic
structure and its underlying drivers are not necessarily
shared among all members of a community [3]. Lack of
topological congruence across gene genealogies of co-
occurring species has been observed whenever they differ
in ecology, past ranges, impending selective pressures,

mutation rates, effective population sizes, local extinction
rates, and dispersal ability, or due to the implicit random-
ness of gene coalescence [4–16]. We explore how
ecological differences between two widespread species of
Bombus bees co-distributed along most of eastern South
America impact their levels and patterns of diversity.
Bombus is a genus of pollinators of vital importance for
natural ecosystems and mankind. It is typically Holartic
and finely adapted to cold climate, showing a higher num-
ber of species and subgenera in the Palearctic relative to
the Nearctic and Neotropic regions [17, 18]. These robust
and hairy bees have thermoregulatory adaptations involving
facultative endothermy [19], which enables them to inhabit
high altitudes and cold temperatures. Among the few
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species found in the Neotropics are B. morio and B.
pauloensis, which occur in sympatry over a large area in
Brazil. These bees are mainly found in high elevation areas
from the state of Rio Grande do Sul to the states of Minas
Gerais and Espírito Santo [20], occupying two Brazilian
diversity hotspots: the Atlantic forest and the Cerrado
savannas.
Depending on the classification system used these two

species are considered as entities belonging to the same
subgenus Fervidobombus [18] or to different ones, the
latter and Thoracobombus [21]. Bombus morio and B.
pauloensis behave similarly, have nearly the same geo-
graphical distribution, and ecological and trophic niches
[22, 23]. Yet they differ in their morphology and inferred
ability to disperse. Bombus morio is thought to have
higher dispersion capacity: its coloration is uniformly
black, and the species has a more robust size compared
to the other Brazilian bumblebees, which allows for lon-
ger flight time [20]. This species also seems to have a
preference for forest habitats, being more commonly ob-
served in gallery forests, which, according to Moure &
Sakagami [20], may further increase its dispersal. Bom-
bus pauloensis, on the other hand, is the most polytypic
Brazilian species, and known for its high level of intra-
specific variation in body color and habitat [20].
Although the distribution of both species of Bombus

would extend beyond Brazilian frontiers, the ranges of both
B. morio and B. pauloensis in Brazil are centered in the
state of São Paulo, a complex region where phylogeo-
graphic breaks have been reported in species of amphibians
[24–27], bats [28], birds [29], and snakes [30]. Multiple pro-
cesses have been loosely associated with and suggested to
underline these patterns, including persistence in isolated
Pleistocene refugia [24, 28, 29, 31, 32], differentiation across
river barriers [33], and vicariance through tectonic move-
ments [25–27, 34]. We investigate whether spatial patterns
of genetic diversity within B. morio and B. pauloensis
support these hypotheses while taking their ecological dif-
ferences in consideration. Particularly, we focus on the doc-
umented differential dispersal abilities and physiological
tolerances of these two species and ask i) whether their dif-
ferential dispersal abilities are tied to distinct infraspecific
tree topologies and historical demography (where topo-
graphical incongruence and less genetic structure is ex-
pected for the high dispersal B. morio), and ii) whether
tolerance to cooler environments allowed these species to
expand their ranges in the Last Glacial Maximum (LGM),
as shown by genetic signatures of expansion toward the
north, contrasting with range contraction in the subsequent
interglacial period. If evidence suggests that these species
have tracked the cooler, more sub-tropical conditions dur-
ing the Late Quaternary, these data will be in sharp contrast
with the abundant examples emerging from studies of
Atlantic forest lowland taxa [24, 28, 29, 31, 32]. We here

test whether Bombus bees may be pinpointed as models of
cold-associated forest species in studies of responses to
climate change in eastern South America over the past
hundred thousand years.

Methods
Sampling
A total of 183 individuals of B. morio and 221 B. pau-
loensis was obtained during field trips and from museum
collections, covering the greater part of the total
distribution in Brazil (Fig. 1b and f; Additional file 1 for
voucher numbers, species name, locality, year, collector,
tissue conservation method, latitude, and longitude). Al-
though Moure’s bee catalogue (http://moure.cria.org.br)
provides a larger range of distribution for both species,
we considered these distributions inaccurate and overes-
timated, since presumably occurrence sites and local col-
lections were visited and no bumblebee were found in
the last decades. Specimens were identified according to
the morphological key proposed by Moure & Sakagami
[20]. Despite collecting efforts in different periods of the
year and visits to local collections, we were unable to
find samples in northern Espírito Santo and northern
São Paulo (Fig. 1b and f). In western Goiás, only a single
queen of B. morio was found.
DNA extraction was performed by the Chelex® 100

method (BioRad, United Kingdom). It included the use
of one middle leg of frozen specimen in 400 ul of 10%
Chelex, mechanical maceration, incubation at 56 °C for
30 min, vortex for 10 s, incubation at 100 °C for 5 min,
vortex for 10 s, and centrifugation for 1 min at
14,000 rpm. The supernatant was used for PCR amplifi-
cation. A DNeasy Tissue Kit (Qiagen, Germany) was
used to extract DNA from pinned specimens according
to the supplier’s recommendations.

Molecular sampling
Mitochondrial DNA data
We partially sequenced the following mitochondrial
markers: Cytochrome C oxidase I (COI), Cytochrome B
(CytB), the large ribosomal RNA subunit (16S), and cluster
4 of tRNAs (Cl4, encompassing the COII 3’ region, tRNAlys,
tRNAasp, and the ATPase 8 5’ end; see Table 1 for primers).
Polymerase Chain Reactions (PCRs) were set up with 2.0 μl
of DNA template in a 20 μl final volume containing 1x
PCR buffer, 0.4 μM each primer, 0.2 mM each dNTP,
1.5 mM MgCl2, 1.5 U of Taq DNA polymerase (Invitrogen,
USA), and 1 M betaine (USB, USA). Reactions were per-
formed in a Mastercycler Pro (Eppendorf, Germany) and
consisted of an initial denaturation step at 94 °C for
5 min followed by 35 cycles at 94 °C for 1 min, 42 °C for
80 s, and 64 °C for 2 min, and a final extension at 64 °C
for 10 min. PCR products were separated on a 0.8% agar-
ose gel, stained with Gel Red 10,000X (Biotium, USA),

Françoso et al. BMC Evolutionary Biology  (2016) 16:267 Page 2 of 16

http://moure.cria.org.br/


Fig. 1 (See legend on next page.)
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and visualized under UV light. The PCR products were
purified with 0.5 μl of ExoSAP-IT® (USB, USA) following
the thermal treatment recommended by the manufacturer,
and sequenced by Macrogen (South Korea). PCR primers
were used for sequencing. The program Muscle [35] in-
cluded in Geneious Pro 7.0.6 software (available from
www.geneious.com) was used to align the sequences. The
phred quality score in Geneious was used to represent an
estimate of error probability in the sequencing. Q20, Q30,
and Q40 indicate error probabilities of 1 in 100 (102),
1,000 (103) or 10,000 (104), respectively. The COI and
CytB sequences were edited and translated into amino
acid sequences to ensure that no nuclear mitochondrial
DNA (NUMT) misamplification had taken place.

Heteroplasmic loci
The COI and CytB electropherograms of B. morio pre-
sented two peaks across multiple sites in the sequencing,
indicating heteroplasmy by absence of stop codons and
frame shift mutations. Two tests were performed to ver-
ify if these double peaks had a direct influence on the
topology. First, we excluded all sites of multiple peaks
from the analysis, and estimated the topology. In
addition, we recovered all possible haplotypes with a
probability of 90% and used them in a second topology
estimation. To this end, all ambiguous sites were scored

with IUPAC ambiguity codes, thus including double peaks
in a non-conservative way. Mitochondrial haplotypes were
separated using seqPHASE [36] for each sample. The data
set of inferred haplotypes is hereafter referred to as
“phased data set.”

Nuclear microsatellite data
Sixty-seven specimens of B. morio and 96 of B. pauloensis
were screened for the eight most polymorphic loci previously
determined for each species [37, 38] (Additional file 1).

Dating and coalescent-based inferences
To provide calibration points for our subsequent analyses,
we used DNA sequences, fossils, and tree data from Hines
[39], and manually added three sequences of B. morio (spec-
imens 30, 177, 211) and two of B. pauloensis (176, 178) to
the data matrix available in treeBASE (Study ID: S1927;
http://www.treebase.org) [39]. For each sample, we gener-
ated DNA sequences of three of the five molecular markers
used by Hines [39]: 16S, ArgK [40], and EF-1α [41], using
primers and conditions specified in those respective publica-
tions. To estimate the age of the root of Bombus and of
the nodes of our samples, we applied the same models of
nucleotide substitution and calibration points used by
Hines [39]: 44.1 Ma for Liotrigona mahafalya-Hypotrigona
gribodoi, 15−20 Ma for Plebeia frontalis-Trigona

(See figure on previous page.)
Fig. 1 Phylogeographic lineages found in Bombus morio (183 samples) and B. pauloensis (221 samples) from 1570 bp of mitochondrial DNA (Cytocrome C
oxidase I, Cytochrome B, the large ribosomal RNA subunit, and cluster 4 of tRNA, covering a region of COII and ATPase 8 genes and tRNAlys and tRNAasp). a,
e coalescent bayesian phylogeny calibrated with fossils according to Hines [39] in the Thoracobombus node, that includes B. morio and B. pauloensis, dated
to 13,5962 Ma (min. 7,6283 Ma, max. 21,5374 Ma). Bombus pauloensis was used as outgroup for the B. moriomatrix and vice versa. Asterisks indicate clades
with high support of posterior probabilities (>0.97). b, f sampling localities with the respective color found in the phylogenetic cluster. Grey areas in the
map correspond to altitudes above 750 m, “X” represents missing data. c, g haplotypes networks. The size of the nodes is proportional to frequencies.
Traces on the line correspond to mutational steps, and the absence of trace corresponds to one mutational step. d, h groups found in Structure software,
according to microsatellite data, correlated with the clusters found in mitochondrial data. Main: main clade; TS: Teodoro Sampaio clade; C: central clade; N:
north clade; S: south clade

Table 1 Characteristics of the mitochondrial regions analyzed for Bombus morio (Bm) and B. pauloensis (Bp)

Mitochondrial region sp. Sequence
size (bp)

Variable
sites

Frequency (%) h Hd Model Primers pairs

A C G T

COI Bm 399 26 (6.5%) 30.6 13.6 10.2 45.6 26 0.7607 TPM1uf + I + G mtD6 and mtD9 [103]

Bp 399 17 (4.3%) 30.8 13.6 10.4 45.3 25 0.7846 TIM1 + I

CytB Bm 396 24 (6.1%) 34.9 12.8 7.6 44.7 33 0.8686 GTR + G AMB16 [104] and mtD26 [103]

Bp 396 21 (5.3%) 30.0 12.8 6.2 43.0 26 0.8202 HKY + I

16S Bm 378 10 (2.6%) 42.0 6.9 11.7 39.4 11 0.2709 HKY + I Cox2 and Atp8rev [105]

Bp 378 7 (1.9%) 40.2 7.5 11.7 40.7 8 0.1388 TPM1uf

Cl4 Bm 397 24 (6%) 40.2 9.8 11.0 39.0 22 0.6735 TrN + I 16SF and 16SR [103]

Bp 396 24 (6.1%) 40.7 10.4 9.9 39.1 29 0.8850 TrN + G

Concatenated Bm 1570 86 (5.4%) 36.8 10.8 10.1 42.2 94 0.9677 - -

Bp 1569 71 (4.5%) 37.3 11.1 9.5 42.1 72 0.9501 - -

COI: Cytochrome C oxidase I; CytB: Cytochrome B; 16S: large ribosomal RNA subunit; Cl4: cluster 4 of tRNA (covering a region of COII and ATPase 8 genes and
tRNAlys and tRNAasp); sp.: species; h: number of haplotypes; Hd: haplotype diversity; Model: nucleotide substitution model
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amazonensis, and 80–100 Ma for Meliponini-Bombini.
The tree available in treeBASE was used as a starting tree,
adding our five specimens as sister clades to the respective
species sampled in Hines [39]. For each marker we used
independent partition and molecular clock. Markov chain
Monte Carlo (MCMC) analysis was performed under a
Yule speciation process model, with a lognormal relaxed
clock [42], through 20 million generations. The prior for
the mean of each rate was set to 1, on a normal distribu-
tion. The analysis was performed in Beast v1.8.0 [43]. Run
quality was conferred in Tracer v1.6 with a threshold of
100 for the effective sample sizes (ESSs). The final tree was
summarized in TreeAnnotator, following a 20% burn in,
and was visualized and edited in FigTree v1.4.0 (http://tree.-
bio.ed.ac.uk/software/figtree/). As expected, the final tree
showed branch lengths very similar to that of Hines [39],
and the Bombus root was dated at ~34 Ma. We used the
node corresponding to the most recent common ancestor
of B. morio and B. pauloensis (dated at 13.5962 Ma ±3; min.
7.6283, max. 21.5374; Additional file 2) as a calibrated node
to guide dating analyses. This node is also especially relevant
because of its high posterior probability value (100%).
A calibrated mtDNA genealogy was inferred for each

species separately, including the phased data of B. morio.
Bombus pauloensis (sample USP2) was used as outgroup
for the B. morio inference, and B. morio (sample USP1)
was used as outgroup for B. pauloensis. Selection of the
best-fit nucleotide substitution models for each species
and mitochondrial region was made in JModelTest 2.1.4
[44], using the Akaike information criterion (Table 1).
Markov chain Monte Carlo (MCMC) analyses were per-
formed with a coalescent, constant size tree prior, and ap-
plying a lognormal relaxed clock. Trees were ran for 40
million generations, and sampled every 1,000 generations.

Genetic diversity and structure
Mitochondrial data
Numbers of haplotypes, haplotype distribution, variable
sites, average number of nucleotide differences (k),
haplotype diversity (Hd) and nucleotide diversity (π)
were calculated in DnaSP 5.10.1 [45]. Haplotype net-
works were constructed in Network 4.6.1.1 (www.fluxus-
engineering.com) using the median joining algorithm
[46]. Tajima’s D, Fu's Fs, and Fay statistics tests for popu-
lation expansion, as well Fst values, were obtained in
Arlequin v.3.5 [47]. Genetic distance between major
mitochondrial lineages of B. morio was inferred through
the sum of the length of branches of a UPGMA tree ob-
tained in Geneious Pro software.

Nuclear microsatellite data
We created a matrix of microsatellite data for B. morio
and B. pauloensis (Additional files 3 and 4) and assessed
genetic diversity using allele frequencies. Expected

heterozygosity (He), observed heterozygosity (Ho), and Fst
values were calculated on GeneAlex v. 6.5 [48]. Allelic
richness (based on minimum sample size) and inbreeding
coefficient (FIS) were calculated with FSTAT 2.9.3.2 [49].
Tests for Hardy–Weinberg equilibrium (HWE) were per-
formed in GENEPOP 4.1 [50]. Homozygote excess for
each locus was verified with MICRO-CHECKER 2.2.3
[51]. Since the microsatellite primers used here are
species-specific and were previously tested in a HWE
population under exactly the same amplification condi-
tions [37, 38], we expect that the homozygote excess will
reflect the population structure, not the presence of null
alleles. To classify individuals into genetic groups (K) and
estimate the proportion of genetic mixing of each individ-
ual (Q), we used the Bayesian attribution method imple-
mented in Structure 2.3.3 [52]. The data were analyzed
using different values of K (1–10), without considering the
origin (which allows for finding structure inside the popu-
lation) in order to determine the most likely number of
groups. We ran 1,000,000 MCMC replicates with a
100,000 burn-in, and 20 interactions for K, to ensure stat-
istical stability [52]. We used an admixture model (each
individual draws some fraction of its genome from each of
the K populations) and correlated allele frequencies [53].
Simulation results were converted into graphs for visual
analysis using Structure Harvester [54]. The 20 interac-
tions were aligned in CLUMPP 1.1.2 [55], and graphical
results were displayed in DISTRUCT 1.1 [56]. The best K
value was estimated using delta K, based on the second
order rate of change of the likelihood scores [57].

Geographic distribution modeling
We used Maxent v.3.3.3 k [58, 59] with default settings
and a subset of 10% of the points for model testing to
generate correlative species distribution models under
present and past climatic conditions, based on
bioclimatic variables from the WorldClim data set [60].
Maxent generates models using presence-only records,
contrasting them with pseudo-absence or background
data resampled from the remainder of the study area.
For input locality data, we used 102 and 71 different

georeferenced occurrence records for B. morio and B.
pauloensis, respectively, from our samples (Additional
file 5). For each species, we developed present-day
models (5 km resolution) and then projected them to
the Last Interglacial (LIG, ~120,000–140,000 years BP) [61]
and Last Glacial Maximum (~21,000 years BP) conditions.
For the LGM, we used stacked projections of MIROC and
CCSM models and used the minimum value of each cell.
We used this approach to identify the most suitable areas
in both projections, since the projection sum overestimates
the area and the projection intersection underestimates the
area. We modeled averages of ten replicates using the
“crossvalidate” option. Model performance was evaluated
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using the Area Under the Curve (AUC) calculated by
Maxent. AUCs > 0.75 are typically considered adequate
for species distribution modeling applications [62].

Environmental influence in the species distribution
analysis
We used a Principal Component Analysis (PCA) to exam-
ine the variance and correlation across the 19 environ-
mental measurements (according to WorldClim) along
the sampled range of B. morio and B. pauloensis. For that,
we plotted the environmental conditions at a single point
per grid cell per mitochondrial lineage for each species
among all our samples. Climates were characterized ac-
cording to the Köeppen-Geiger climatic classification [63].
As the two species seem to mainly occupy regions of

higher elevations (Fig. 1b and f), the influence of altitude
was verified by extracting altitude values for our sampling
localities. Each locality was considered just once by clade
in B. morio and B. pauloensis. Abundance was not consid-
ered since we cannot affirm that the collection efforts
were the same in every locality. GTOPO 30 was used as
the digital elevation model, available from the U.S.
Geological Survey (https://lta.cr.usgs.gov/GTOPO30).
All maps were made in R [64], using Raster [65] and

Maptools [66] packages.

Results
Coalescent phylogeny, molecular clock analyses, and
haplotype networks
For each mitochondrial region analyzed in this study,
the following information was recorded: size of frag-
ments sequenced, variable sites, nucleotide frequency,
number of haplotypes, and haplotype diversity (Table 1).
Bayesian phylogenies of B. morio and B. pauloensis,
based on the mtDNA data, show different topologies
(Fig. 1a and e). Most B. morio samples are clustered in a
well-supported clade with no internal structure; a sec-
ond well-supported clade encompasses two samples,
both from Teodoro Sampaio, a town located in the west-
ern portion of the state of São Paulo (Fig. 1a and b).
Genetic distance between these clades is 1.73%. Bombus
pauloensis, in turn, show three distinct and strongly sup-
ported clades (posterior probabilities > 0.97) but weakly
supported basal nodes, basically forming a trichotomy
due to those low posterior probability values. The three
clades are here named according to their geographic ex-
tent: central (C clade), northern (N clade), and southern
(S clade). None of these clades present well supported
internal structure (Fig. 1e and f). Dating suggests that
the major splits in the gene trees occurred between
100,000−200,000 years ago (Fig. 1e and f).
Haplotype networks allow the visualization of the

same general inferences provided by the phylogenetic
analyses. Bombus morio shows differentiation between

Teodoro Sampaio samples and all other individuals from
throughout the range of the species, and no genetic
structure within the latter. Reticulations are conspicuous
in this network (Fig. 1c). This species showed double
peaks throughout its sequences, and the reticulation is
observed even when the sites with multiple peaks were
excluded. The most abundant haplotype was verified in
26 samples and was broadly distributed from south to
north and east to west, sometimes present in locations
2,000 km apart (e.g., Lajeado in the state of Rio Grande
do Sul to Igrapiúna in the state of Bahia).
The haplotype network of B. pauloensis allows the

visualization of clades C, N, and S, as observed in the
phylogenetic analysis. Haplotypes differ by few mutation
steps (Fig. 1g). In the N clade, the two most distant sites
are located ~1,000 km apart (from Itatiaia in the state of
Rio de Janeiro to Alto Paraíso de Goiás, in the state of
Goiás); in the S clade they are, maximally, ca. 800 km
apart (from Caxias do Sul in the state of Rio Grande do
Sul to São Paulo, in the state of São Paulo).
Bees of the three mitochondrial clades of B. pauloensis

differ in frequency of body color patterns (Fig. 1f ). The
S clade encompasses bees with regular yellow stripes.
The N clade encompasses bees with the whole body
black, with few exceptions. The C clade encompasses
bees with the whole body black and also bees with ir-
regularly spaced yellow stripes.
In B. morio, at least 3% of COI and 1.75% of CytB

sequences sites showed double peaks and low phred
score values (< Q20; error probabilities of 1 in 100),
despite the absence of stop codons and frame shifts
(Additional file 6). Sequencing was repeated for selected
individuals to ensure that the results were not due to
PCR contamination, and the same double peaks were
consistently found. Double peaks were not related to
specific individuals or geographic regions. Exclusion of
these loci from downstream analyses resulted in un-
changed phylogeny and haplotype network topologies.
The phased data set consisted of 366 sequences (from
183 individuals of B. morio), and the calibrated Bayesian
phylogeny was congruent with that inferred with the ori-
ginal, unphased, dataset (two structured clades with high
posterior probabilities, lack of structure within clades;
data not shown). Double peaks were not observed in B.
pauloensis.

Genetic diversity and structure
Mitochondrial data
Bombus morio and B. pauloensis show high levels of Hd
yet low π. Fu`s Fs and Tajima`s D statistics showed signifi-
cant negative values (Table 2). In B. morio, Fst values be-
tween the two main mitochondrial lineages was high
(0.82429), indicating strong differentiation between the
Teodoro Sampaio and Main clades (Table 3). Fst values
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Table 2 Genetic diversity indices for each clade of Bombus morio (Main: main clade; TS: Teodoro Sampaio clade) and B. pauloensis (N: north clade; C: central clade; S: south
clade) obtained from 1,575 bp of the following concatenated mitochondrial regions: Cytochrome C oxidase I (COI), Cytochrome B (CytB), the large ribosomal RNA subunit (16S),
and cluster 4 of tRNA (covering a region of COII and ATPase 8 genes and tRNAlys and tRNAasp)

B. morio B. pauloensis

Main TS All C N S All

Ns 181 2 183 21 110 90 221

h 87 2 89 6 36 30 78

Hd 0.963 - 0.964 0.72381 0.91009 0.87491 0.95483

k 4.349 - 4.92374 1.20952 3.30525 2.89588 8.378

π 0.00278 - 0.00315 0.00077 0.00184 0.00170 0.00537

Tajima`s D (p-value) -1.85387 (0.00600) 0.00000 (1.00000) -1.97254 (0.00200) -1.22665 (0.10600) -1.54169 (0.03300) -1.69378 (0.02000) -0.61631 (0.30300)

Fu`s Fs (p-value) -25.40396 (0.00000) 0.00000 (0.22800) -25.18616 (0.00100) -1.60993 (0.11000) -25.66400 (0.00000) -17.96060 (0.00000) -24.21740 (0.00000)

Ns: number of samples; h: number of haplotypes; Hd: haplotype diversity; k: average number of differences; π: nucleotide diversity
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obtained across the C, N, and S lineages of B. pauloensis
were also very high (0.79 N vs. S; 0.78 C vs. S; 0.76 C vs. N).

Nuclear microsatellite data
All microsatellite loci were polymorphic for both species
(Table 4). In B. morio’s Main clade, allele numbers per
locus ranged from seven to 25 (mean 15.125). Expected
and observed heterozygosity levels ranged from 0.658 to
0.932 (mean 0.835) and 0.621 to 0.891 (mean 0.755), re-
spectively. Four loci were not in HWE (BM1, BM13,
BM18 and BM20) and presented homozygote excess. FIS
value (0.104) was significant.
For B. pauloensis, the allele number per locus ranged

from six to 23 (mean 12.917). Expected and observed
heterozygosity levels ranged from 0.638 to 0.889 (mean
0.816) and 0.476 to 0.833 (mean 0.708), respectively. Al-
lele richness was high (11.569). Within the C clade all
loci were in HWE; homozygote excess was observed
only in BA2. In the N clade, only BA4 and BA17 were in
HWE; homozygote excess was found in all loci, except
BA17. For the S clade, loci BA7, BA8, BA9, BA15 and
BA17 were in HWE; loci BA4, BA11, BA15, and BA17
presented homozygote excess. The observed heterozy-
gosity was lower than the expected in N, followed by the
S and C clades. Allele richness was highest in the N and
S clades. Fst values across each pair of clades were very
low (0.025 C vs. N; 0.017 C vs. S; 0.019 N vs. S), indicat-
ing historical gene flow and lack of structure within the
species. FIS values were significant for the three clades,
but higher in N and S (0.234 and 0.150) than C (0.066).
According to the Structure and Structure Harvester

analyses, the best delta K value found for B. morio was 2
(Fig. 1d; Additional file 7). Yet, because a setup of K = 1
had the highest likelihood value (Additional file 8), and
given that the software calculates the rate of change in the
log likelihood, it will not output results for K = 1. The Fst
values between the two K`s found were low (0.024). For B.
pauloensis the best delta K value (Additional files 9 and 10)

suggests the occurrence of four distinct nuclear clusters,
but Fst values among them are low (0.025−0.048; Fig. 1h).

Geographic distribution modeling
Distribution models of both species had high AUC levels
(>0.97). Maximum temperature of the warmest month
(Bio 5), precipitation of the warmest quarter (Bio 18),
and temperature seasonality (Bio 4) were the climatic
variables that most contributed to distribution models of
both species. Together, these climatic variables contrib-
uted for 77.5% and 80% for B. morio and B. pauloensis
distributions, respectively. These common climatic fac-
tors strongly support the geographic distribution overlap
between these species and are consistent with observa-
tions that higher temperatures associated with low pre-
cipitation seem to limit the distribution of these bees.
For both species, the ENMs revealed population re-

traction in the LIG, followed by expansion in the LGM
(Fig. 2). As an exploratory analysis, we performed distri-
bution projections for each of the three clades found in
B. pauloensis (C, N, and S) (Fig. 2). The clade C showed
retraction to the south and southeast regions during the
LIG and expansion to the north during the LGM. The
clade N showed strong retraction in the distribution to
the southeast region during the LIG and expansion to
the north in the LGM. The clade S remained in the
south during the LIG and the LGM (see Additional file 11
for climatic variables contributions for each species). We
analyzed the suitability for each species and for the
clades in B. pauloensis with three thresholds: max-
imum probability, corresponding to a predicted prob-
ability of the presence higher than 75%; medium
probability, corresponding to probabilities higher than
50%; and minimum probability, representing probabil-
ities over 25%. Based on this information, we evalu-
ated the percentage reduction of species suitable area
(Fig. 2).

Environmental analysis
The distribution of these two species of bees is largely
defined by climate. Principal components 1 and 2 ex-
plain 49.06 and 21.08% of the environmental variation of
both species, totaling 70.14%. Bioclimatic variables most
associated with the first principal component were
temperature seasonality, precipitation of the wettest
month, precipitation of the driest month, and precipita-
tion of the coldest quarter (loading values of 0.286,
0.284, 0.283, and 0.269 respectively). For the second
component, those bioclimatic variables most associated
with the distribution of the species were maximum
temperature of the warmest month, mean temperature
of the warmest quarter, minimum temperature of the
coldest month, and mean temperature of the driest

Table 3 Genetic diversity indices among clades of Bombus morio
(Main: main clade; TS: Teodoro Sampaio clade) and B. pauloensis (N:
north clade; C: central clade; S: south clade) obtained from 1575 bp
of the following concatenated mitochondrial regions: Cytochrome C
oxidase I (COI), Cytochrome B (CytB), the large ribosomal RNA subunit
(16S), and cluster 4 of tRNA (covering a region of COII and ATPase 8
genes and tRNAlys and tRNAasp)

Clades Hd k Kxy Fst

B. morio Main TS 0.96697 4.54772 15.89779 0.82429

B. pauloensis C S 0.84808 2.57684 11.20899 0.77780

C N 0.88222 2.9693 9.50606 0.76508

S N 0.89429 3.12104 14.0295 0.79014

Hd: haplotype diversity; k: average number of differences; Kxy: average distance
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quarter (loading values of 0.388, 0.378, 0.272 and 0.271
respectively; Fig. 3a).
We found no association between the range of B. morio’s

main clade and the distribution points of the principal com-
ponent analysis. According to the PCA and the species dis-
tribution, B. morio is associated with conditions

represented by both sides of the components, occurring
equally in the humid subtropical, high altitude tropical, and
tropical savannah climates (Cfa, Cwa or Cwb and Aw, re-
spectively, according to Köeppen-Geiger classifications).
The Teodoro Sampaio region, however, is associated with
the negative side of component 1 (mostly related to

Table 4 Characterization of the genetic variability of clades from microsatellite data

Species Clade Locus Ns Na Ar Ho He p-val Hom FIS

Bombus morio Main BM1 66 12 11.939 0.742 0.871 0.0216 yes 0.155

BM3 66 14 13.908 0.773 0.860 0.3329 no 0.109

BM4 66 14 13.847 0.788 0.813 0.4699 no 0.039

BM11 64 20 20.000 0.891 0.929 0.1365 no 0.050

BM13 66 7 6.970 0.621 0.739 0.0009 yes 0.167

BM17 66 14 13.968 0.636 0.658 0.4432 no 0.041

BM18 66 15 14.939 0.803 0.883 0.0101 yes 0.099

BM20 65 25 24.907 0.785 0.932 0.0025 yes 0.166

Mean 65.625 15.125 15.060 0.755 0.835 - - 0.104

Bombus pauloensis C BA2 21 10 9.808 0.571 0.729 0.0324 yes 0.239

BA9 21 10 9.901 0.810 0.839 0.2017 no 0.059

BA11 20 12 12.000 0.850 0.825 0.5260 no -0.005

BA15 21 7 6.905 0.714 0.710 0.2039 no 0.018

BA8 21 12 11.760 0.905 0.814 0.5813 no -0.087

BA4 21 10 9.901 0.810 0.855 0.1245 no 0.077

BA7 21 12 11.808 0.762 0.870 0.2422 no 0.148

BA17 21 16 15.711 0.857 0.910 0.0877 no 0.083

Mean 20.875 11.125 10.974 0.785 0.819 - - 0.066

N BA2 41 12 8.595 0.415 0.664 0.0039 yes 0.386

BA9 41 13 11.024 0.634 0.866 0.0000 yes 0.279

BA11 41 6 5.327 0.366 0.595 0.0005 yes 0.395

BA15 41 12 9.731 0.561 0.752 0.0006 yes 0.265

BA8 41 16 13.449 0.732 0.906 0.0035 yes 0.204

BA4 41 16 11.932 0.707 0.857 0.3316 yes 0.186

BA7 41 15 12.847 0.683 0.883 0.0056 yes 0.238

BA17 41 20 14.094 0.878 0.874 0.0965 no 0.008

Mean 41 13.5 10.875 0.622 0.799 - - 0.234

S BA2 34 8 7.039 0.441 0.522 0.0378 no 0.169

BA9 34 11 10.299 0.765 0.875 0.0929 no 0.140

BA11 34 23 17.330 0.706 0.906 0.0000 yes 0.235

BA15 33 11 9.395 0.636 0.809 0.0831 yes 0.228

BA8 34 13 11.360 0.824 0.870 0.4091 no 0.068

BA4 33 14 11.872 0.727 0.881 0.0052 yes 0.189

BA7 34 16 13.590 0.882 0.903 0.2410 no 0.037

BA17 34 15 12.761 0.765 0.882 0.1047 yes 0.148

Mean 33.75 13.875 11.706 0.718 0.831 - - 0.150

Main: main clade found in Bombus morio from mitochondrial data; C, S and N: central, south, and north clades obtained in B. pauloensis from mitochondrial data. Ns:
Number of samples; Na: effective number of alleles; Ar: allelic richness; Ho: observed heterozygosity; He: expected heterozygosity; p-val: p-value used to determine
whether markers deviated from Hardy-Weinberg equilibrium (<0.05); Hom: homozygote excess, according to MicroChecker; Fis: inbreeding coefficient
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precipitation extremes) and with the positive side of
component 2 (mostly related to temperature ex-
tremes). In a very distinct region, these samples are
located in a transitional zone between Atlantic forest
and Brazilian savanna. The extreme temperature of
the warmer months is the bioclimatic variable that
best differentiates this region.

Bombus pauloensis showed no association with the
two principal components when analyzed as a whole.
Nevertheless, the mitochondrial clades C, N, and S, with
different frequencies of color patterns, occupy different
geographical and climatic regions. The C clade is associ-
ated with the positive side of component 1 and the nega-
tive side of component 2. It occurs in high altitude

Fig. 2 Geographic distribution modeling and area evaluation of Bombus morio and B. pauloensis, and the clades found in B. pauloensis from mitochondrial
DNA data. C: central; N: north; S: south. LIG: Last Interglacial (~120,000–140,000 years BP); LGM: Last Glacial Maximum (~21,000 years BP). Graphics represent
the distributional area reduction from LIG until current data, in suitability thresholds of maximum, medium and minimum probabilities (higher than 75%,
higher than 50% and higher than 25%, respectively) of predicted presence. The axes of ordinates show the occupied area in a normalized ratio
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tropical areas (above 500 m), mainly in the Serra do Mar
region, characterized by mild temperatures (18−26 °C)
during the entire year and high humidity. In summer,
the maximum temperature rarely exceeds 30 °C. The N
clade is associated with the negative sides of components
1 and 2 and occurs in tropical savanna climate. In this
climate, the average temperature in all months of the
year is over 18 °C; it has a very well defined dry and wet
season. This clade occupies a warm region with ex-
tremes of humidity, therefore the first and second com-
ponents from PCA does not influence its distribution.
The S clade is associated with the positive sides of com-
ponents 1 and 2, and occurs in humid subtropical cli-
mate. This type of climate is characterized by abundant
rainfall in all months of the year (which justifies the
positive side of component 1), but mostly in summer.
The temperatures of the hottest month are above 22 °C,
the temperatures in the coldest month are lower than
18 °C, and the average of the minimum temperature in
winter is -3 °C, which explains the influence of
temperature extremes in this clade.
Although both species have a preference for 601–

1,000 m elevation regions, B. morio also occupies lower al-
titudes (0–200 m) while B. pauloensis seems to be more
tolerant of higher elevation conditions (1,201–1,400 m).
The C, N, and S clades were not correlated with any
specific altitude value (Fig. 3b).

Discussion
Topological incongruence due to differences in dispersion
Topological congruence occurs when similar phylogeo-
graphic patterns are detected between species that

responded in synchrony to the same historical events
[67]. Mitochondrial data fail to support topological con-
gruence between our two study species, and our findings
are congruent with a hypothesis that the higher disper-
sion capacity of B. morio is responsible for the discord.
Except for two samples collected in Teodoro Sampaio,
which are deeply divergent from the species’ main clade
and may represent a previously undescribed species (to
be confirmed), B. morio shows evidence of ample gene
flow, with no lineage structure in geographic or environ-
mental space. Unlike patterns of structure detected in
vertebrates of the Atlantic forest [24–30], a few mito-
chondrial haplotypes were as widely distributed as
2,000 km of distance. Lack of genetic differentiation, as
found in B. morio, may be indicative of large population
size, high dispersal capacity, or both. It is known that
bumblebees can have large dispersal capacity, especially
males [68–74]. In the case of B. morio, Moure & Sakagami
[20] reported flights of over 2,500 m. Moreover, these bees
are the most robust compared to other Brazilian species
[20]. These results suggest B. morio as a large, panmictic
species – or at least reflect historical panmixia and large
population sizes. Despite rarely, panmixia has been ob-
served in a few species, including bees [75, 76].
In contrast to the patterns observed in the high disper-

sal B. morio, we find high levels of mitochondrial lineage
structure within B. pauloensis. This suggests that this
later may present lower dispersal capability leading to
geographically structured clades (C, N, and S) and lower
overall levels of gene flow throughout its range. Fre-
quencies of color patterns along the distribution of B.
pauloensis differ among the mitochondrial clades found

Fig. 3 Environmental influence in the species distribution analysis. a PCA of the influence of bioclimatic variables (1−19, according to WorldClim) on the
biogeographic patterns within Bombus morio and B. pauloensis. Comp. 1: temperature seasonality, precipitation of wettest month, precipitation of driest
month, and precipitation of coldest quarter (4, 17, 14 and 19, respectively); Comp. 2: maximum temperature of warmest month, mean temperature of
warmest quarter, minimum temperature of coldest month, and mean temperature of driest quarter (5, 10, 6 and 9, respectively); b number of observations in
relation to altitude in Bombus morio, B. pauloensis, and their internal clades. Lines represent the tendency of observations sum by species and are not
consistent with the scale
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(completely black in N, with regular yellow stripes in S,
and with both and intermediates morphotypes in C). A
very similar morphological pattern was found in snakes
of the Bothrops jararaca complex, in which intermediate
morphologies were found in the state of São Paulo and
may represent a hybrid zone between the southern and
northern populations [30].
Microsatellite data showed no structure for either species.

For B. morio, as the Fst values between the two K`s were
low (0.024), we failed to detect population structure; micro-
satellite data hence corroborated the signal emerging from
the mtDNA (Fig. 1d). In B. pauloensis, however, also no
structure was verified: low nuclear Fst values were found be-
tween the four K`s found (0.025−0.048; Fig. 1h), in contrast
with the mtDNA results. Low amounts of geographic struc-
ture in the microsatellite data seem to be common in widely
ranged bees, as little or none have been reported, for in-
stance, in Amegilla dawsoni [76], Andrena vaga [77],
Euglossa cordata [78], Osmia rufa [79], and other Bombus
species [80, 81, 82]. Such lack of structure has been attrib-
uted to extended male flight distance, except in cases of con-
spicuous barriers such as oceanic islands [83, 84], high
mountains [85], or for species that had been isolated for a
long period [86].

Heteroplasmy
Although heteroplasmy is often suggested to be more
common than thought [87], published data are scarce.
Our tests indicate that heteroplasmy was present but did
not influence the topology of B. morio. The same was re-
ported in the phylogeographic study of the shrimp
Crangon crangon [88], where original and phased datasets
with heteroplasmy showed the same genetic structuration,
probably because, as found here, the phased haplotypes
within most individuals tended to be very closely related.
Heteroplasmy is difficult to address because multiple

haplotypes presumably remain functional and lack any
telltale signs in the sequence, such as stop codons or
frame-shift mutations [89]. In bees, the presence of het-
eroplasmy has been flagged in Apis dorsata (Cao et al.
[90] say “double peaks”), Centris analis [91], Andrena
tarsata, Colletes succinctus, Halictus rubicundis, H.
tumulorum, Osmia aurulenta, and Sphecodes geoffrellus
[92]. However, its effect in bees has not been discussed
extensively (but see Magnacca & Brown [89], which re-
port heteroplasmy in the mtDNA of 21 of the 49 species
of Hawaiian Hylaeus, at levels of 1−6% or more, with
strong implications for the reliability of species identifi-
cation through DNA barcodes).

Bottleneck in LIG and expansion in LGM
Molecular data and species distribution models of these
two bee species are consistent with demographic re-
sponses to environmental changes in the Late Quaternary.

Paleodistribution modeling suggests contraction in the
range of both species during the LIG, towards the pres-
ently colder southern and southeastern Brazil, followed by
range expansion during the LGM. All analyses of genetic
diversity indicate population bottleneck followed by rapid
population growth and accumulation of mutations in both
species: high numbers of haplotypes and haplotype diver-
sity combined with few mutational points among them,
negative and significant values of Fu`s Fs and Tajima`s D
statistics, large values of Hd combined with low values of
π [93] in mitochondrial data, homozygote excess, signifi-
cant values of FIS, a high number of alleles per locus, and
allele richness in the nuclear microsatellite data. Major di-
versification events, in both species, are dated back to the
late Pleistocene (100,000−200,000 ya).
With respect to B. morio, it is possible that warmer pe-

riods of the early Pleistocene led to the isolation and dif-
ferentiation of the lineage presently seen in Teodoro
Sampaio. Widely distributed species with a history of gen-
etic isolation at deeper evolutionary timescales, such as
this one, often encompass cryptic species or geographic-
ally distinct lineages that possess unique adaptations or
face different environmental pressures [94]. In fact, Teo-
doro Sampaio is located in an ecotone (a transitional zone
between Atlantic forest and Brazilian savanna) that is iso-
lated from the main clade distribution by low-lying areas.
Ecotones are important for biodiversity since adaptive
variation across environments is common in these areas
[95]. However, differently from the mtDNA data, the sin-
gle Teodoro Sampaio sample genotyped for microsatellite
variation shares alleles with individuals whose mitochon-
drial lineages belong to the Main clade. This is not sur-
prising given the stochasticity of the coalescent process, or
may suggest that nuclear gene flow may have existed more
recently, through males. More detailed studies of Teodoro
Sampaio samples are needed to elucidate this question.
In B. pauloensis, levels of geographic structure (as shown

by Fst) and preliminary dating of the mitochondrial geneal-
ogy is congruent with a Late Pleistocene origin of the three
major clades (C, N and S). Distribution models conducted
for the species as a whole and separately for each clade cor-
roborate a hypothesis of southern expansion during the LIG
and a northern expansion in the LGM. Negative values of
Fu`s Fs and Tajima`s D in the mitochondrial data statistics
support this hypothesis of population expansion in the N
and S clades. Moreover, while the C clade is in HWE ac-
cording to nuclear microsatellite data, there is homozygote
excess in the microsatellites of individuals belonging to the
N and S mitochondrial clades. Microsatellite allele richness
also was higher in the latter clades, suggesting a marked
bottleneck and recent expansion. Differently from localities
in the southern and northern most range of the species,
those in Eastern São Paulo appear as a suitable region for
the species irrespective of the time period modeled.
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A new phylogeographic scenario in state of São Paulo
The eastern portion of the state of São Paulo seems to
represent the center of genetic diversity for B. pauloen-
sis. This is supported by the presence, in this region, of
all three mitochondrial lineages, all morphotypes, higher
genetic diversity, the absence of homozygote excess in
the microsatellite data, the HWE observed, the presence
of transitional zones among different climates, and the
higher levels of climatic stability over time.
Our analyses suggest that both B. morio and B. pauloen-

sis contracted their ranges toward the southeast during
the LIG, and underwent dramatic demographic expansion
in the LGM. This contrast with the scenario suggested for
lowland and mid-altitude Neotropical species, in which
refuges during the LGM [24, 28, 29, 31, 32] and tectonic
activity [25–27, 34] seem to be tied to the maintenance
and generation of genetic diversity. Our study species re-
veal a different scenario for cold-associated species, whose
distributions were likely larger during the LGM and which
were isolated in “refuges” during the LIG, much like other
cold-tolerant species of the Atlantic Forest [27, 32, 96, 97].
Bumblebees are cold adapted, and warm periods seem-
ingly contributed to demographic contraction, while the
opposite happened in periods of cooling.

Current distribution
Bombus morio and B. pauloensis seem to have a prefer-
ence for regions with higher elevations, which could be
explained by their Nearctic origins of the South American
Bombus species [39] and tolerance to cold climates. Given
the absence of structure in the microsatellite data, no bar-
riers to male gene flow are apparent. In contrast to the
majority of bumblebee species, which have an annual life
cycle (fertilized queens emerge from hibernation in late
winter or early spring to found nests) [98, 99], B. morio
and B. pauloensis do not hibernate. Year-round availability
of food [22], tied to a biannual life cycle [100], may further
increase gene flow.
For B. pauloensis, the mitochondrial clades C, N, and S

are located in different climatic regions. The spatial distri-
bution of mitochondrial and morphological diversity
nonetheless suggest some level of gene flow across puta-
tive barriers structuring local diversity: individuals belong-
ing to mitochondrial clades S and N can be found in the
central São Paulo state, and higher morphological diversity
is also found in this region. The corridor of higher altitude
mountains found in eastern São Paulo may possibly pro-
vide a connection route among these three clades.
Parapatric diversification is the most suitable model to

explain the distribution scenarios for the clades in B.
pauloensis, isolated or semi-isolated from one another
by different climatic conditions and altitude barriers.
High-elevation habitat may also serve as an isolating mech-
anism in some Bombus species, as in B. bifarius [101], since

populations at higher elevations are smaller and less well
connected than those at lower elevations [102].

Conclusions
Our results are congruent with a hypothesis of climatic os-
cillations during the Pleistocene having directly influenced
the population demography of two widespread Neotropical
bumblebees. Topologic congruence is not observed between
their mitochondrial genealogies, as expected given the docu-
mented higher dispersal capacity of B. morio. Bombus morio
is a very homogeneous species (morphological and genetic-
ally), showing no genetic structure in both mitochondrial
and nuclear data, which suggest panmixia. Demographic ex-
pansions in the LGM, tied to its great dispersal ability, likely
explain the high genetic diversity found in this species and
the absence of genetic structure.
Bombus pauloensis also shows no structure in the micro-

satellite data, yet our sampling reveals three distinct mito-
chondrial lineages. Results of the demographic analyses and
paleodistribution models are consistent with a scenario of
southern expansion during the LIG and a northern expan-
sion during the LGM. Eastern São Paulo have remained
suitable for species occurrences during these distinct cli-
matic periods, and today harbors most of the genetic and
morphological diversity within the species range.
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