3,014 research outputs found

    Cortical and thalamic connectivity to the second auditory cortex of the cat is resilient to the onset of deafness.

    Get PDF
    It has been well established that following sensory loss, cortical areas that would normally be involved in perceiving stimuli in the absent modality are recruited to subserve the remaining senses. Despite this compensatory functional reorganization, there is little evidence to date for any substantial change in the patterns of anatomical connectivity between sensory cortices. However, while many auditory areas are contracted in the deaf, the second auditory cortex (A2) of the cat undergoes a volumetric expansion following hearing loss, suggesting this cortical area may demonstrate a region-specific pattern of structural reorganization. To address this hypothesis, and to complement existing literature on connectivity within auditory cortex, we injected a retrograde neuronal tracer across the breadth and cortical thickness of A2 to provide the first comprehensive quantification of projections from cortical and thalamic auditory and non-auditory regions to the second auditory cortex, and to determine how these patterns are affected by the onset of deafness. Neural projections arising from auditory, visual, somatomotor, and limbic cortices, as well as thalamic nuclei, were compared across normal hearing, early-deaf, and late-deaf animals. The results demonstrate that, despite previously identified changes in A2 volume, the pattern of projections into this cortical region are unaffected by the onset of hearing loss. These results fail to support the idea that crossmodal plasticity reflects changes in the pattern of projections between cortical regions and provides evidence that the pattern of connectivity that supports normal hearing is retained in the deaf brain

    Constraints on dark energy models from radial baryon acoustic scale measurements

    Full text link
    We use the radial baryon acoustic oscillation (BAO) measurements of Gaztanaga et al. (2008) to constrain parameters of dark energy models. These constraints are comparable with constraints from other "non-radial" BAO data. The radial BAO data are consistent with the time-independent cosmological constant model but do not rule out time-varying dark energy. When we combine radial BAO and the Kowalski et al. (2008) Union type Ia supernova data we get very tight constraints on dark energy.Comment: 24 pages, 8 figures, 1 table. Minor changes to match the published versio

    Observation of different spin behavior with temperature variation and Cr substitution in a multiferroic compound YMn2_2O5_5

    Full text link
    In this article, the collective response of the spins is explored through low field bulk magnetic measurement for the series YMn2−x_{2-x}Crx_xO5_5 (x= 0.0, 0.05). Low field ac susceptibility and dc magnetization of YMn2_2O5_5 shows multiple transition in analogy to those observed in electrical measurement of the compound. Using various time dependent magnetization protocols it has been observed that the behavior of spins in commensurate and incommensurate phase are drastically different. YMn1.95_{1.95}Cr0.05_{0.05}O5_5 undergoes a ferrimagnetic ordering with an enhanced magnetic ordering temperature as compared to the parent, which undergoes an antiferromagnetic ordering. Appearance of spontaneous magnetization without any major change in the atomic structure is rather significant since the parent compound is an important multiferroic material. In addition, magnetic memory effect is observed in the Cr substituted compound whereas it is absent in the parent compound
    • …
    corecore