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ORIGINAL ARTICLE
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Abstract It has been well established that following sen-

sory loss, cortical areas that would normally be involved in

perceiving stimuli in the absent modality are recruited to

subserve the remaining senses. Despite this compensatory

functional reorganization, there is little evidence to date for

any substantial change in the patterns of anatomical con-

nectivity between sensory cortices. However, while many

auditory areas are contracted in the deaf, the second

auditory cortex (A2) of the cat undergoes a volumetric

expansion following hearing loss, suggesting this cortical

area may demonstrate a region-specific pattern of structural

reorganization. To address this hypothesis, and to com-

plement existing literature on connectivity within auditory

cortex, we injected a retrograde neuronal tracer across the

breadth and cortical thickness of A2 to provide the first

comprehensive quantification of projections from cortical

and thalamic auditory and non-auditory regions to the

second auditory cortex, and to determine how these pat-

terns are affected by the onset of deafness. Neural

projections arising from auditory, visual, somatomotor, and

limbic cortices, as well as thalamic nuclei, were compared

across normal hearing, early-deaf, and late-deaf animals.

The results demonstrate that, despite previously identified

changes in A2 volume, the pattern of projections into this

cortical region are unaffected by the onset of hearing loss.

These results fail to support the idea that crossmodal

plasticity reflects changes in the pattern of projections

between cortical regions and provides evidence that the

pattern of connectivity that supports normal hearing is

retained in the deaf brain.

Keywords Anatomical connectivity � Auditory
deprivation � BDA � Crossmodal plasticity
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AAF Anterior auditory field

AES Anterior ectosylvian sulcus

AEV Anterior ectosylvian visual area

ABR Auditory brainstem response

ALLS Anterolateral lateral suprasylvian area

AMLS Anteromedial lateral suprasylvian area

A1 Primary auditory cortex

A2 Second auditory cortex

BDA Biotinylated dextran amine

CGP Posterior cingulate area

CVA Cingulate visual area

dB Decibel

DLS Dorsal lateral suprasylvian area

dPE Dorsal division of the posterior ectosylvian

gyrus

DZ Dorsal zone of auditory cortex

ED Early-deaf

EEG Electroencephalography
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EPp Posterior aspect of the posterior ectosylvian

gyrus

fAES Auditory field of the anterior ectosylvian sulcus

IN Insular auditory cortical area

iPE Intermediate division of the posterior

ectosylvian gyrus

LD Late-deaf

LP Lateral posterior nucleus

MGBd Dorsal division of the medial geniculate body

MGBm Medial division of the medial geniculate body

MGBv Ventral division of the medial geniculate body

MZ Multisensory zone

NH Normal hearing

nHL Normal hearing level

PAF Posterior auditory field

PES Posterior ectosylvian sulcus

PLLS Posterolateral lateral suprasylvian area

PMLS Posteromedial lateral suprasylvian area

PO Posterior complex

PS Posterior suprasylvian area

Psb Presubiculum

Rsp Posterior limb of the rostral suprasylvian sulcus

SGN Suprageniculate nucleus

SVA Splenial visual area

S2 Second somatosensory area

S2m Medial division of the second somatosensory

area

S3 Third somatosensory area

S4 Fourth somatosensory area

S5 Fifth somatosensory area

T Temporal auditory cortical area

VAF Ventral auditory field

VLS Ventral lateral suprasylvian area

VPAF Ventral posterior auditory field

vPE Ventral division of the posterior ectosylvian

gyrus

Introduction

The term neuroplasticity refers to the impressive capacity

of the brain to be shaped by experience. In the case of

auditory perception, this flexibility allows stimulus

encoding to be optimized for those sounds encountered

most frequently in our environment. Over time, this flexi-

bility diminishes in favour of stability (see Takesian and

Hensch 2013 for review). In the case of normal develop-

ment, auditory pathways from cochlea to cortex are

established prior to the onset of hearing (O’Leary et al.

2007; Jones et al. 2007), and are structurally and func-

tionally refined by stimulus-evoked activity (Dahmen and

King 2007; Eggermont 2008). While this experience-de-

pendent reorganization typically leads to optimal function

across the brain (Fig. 1), it also leaves sensory pathways

vulnerable to periods of abnormal experience. For exam-

ple, there is a large body of evidence suggesting that fol-

lowing periods of deafness, auditory cortical regions are

crossmodally reorganized to process visual (Neville et al.

1983; Finney et al. 2001, 2003; Lee et al. 2001; Lambertz

et al. 2005; Pekkola et al. 2005; Lomber et al. 2010;

Meredith et al. 2011; Karns et al. 2012) or somatosensory

stimuli (Levänen et al. 1998; Levänen and Hamdorf 2001;

Auer et al. 2007; Allman et al. 2009; Bhattacharjee et al.

2010; Meredith and Lomber 2011; Karns et al. 2012).

In addition to functional reassignment, there is some

evidence for changes in the structure of auditory cortical

fields following deafness. For example, differential patterns

of SMI-32 labelling provide clear borders between regions

of auditory cortex (Mellott et al. 2010); Wong et al. (2014)

used these labelling profiles to quantify changes in the areal

cartography of auditory cortex following early- and late-

onset deafness in the cat. While the total fractional volume

occupied by auditory cortex was not shown to be altered by

the onset of deafness, some auditory cortical fields revealed

age-related changes following hearing loss. For example,

the primary auditory cortex of the cat (A1) showed a

decreased volume following both early- and late-onset

hearing loss; this was in accordance with anatomical

(Chabot et al. 2015) and functional studies showing little or

no crossmodal reorganization in this field (Stewart and

Starr 1970; Kral et al. 2003). However, Wong et al. also

noted a small number of auditory cortical fields that

occupied larger fractional volumes in deaf animals than in

controls. For example, the volume of the second auditory

cortex (A2) was significantly greater following early-onset

hearing loss than in normal hearing animals as the result of

a dorsal shift in the A1–A2 border (Fig. 2).

That early-onset deafness induces changes differing by

area is not surprising; across sensory systems, it has been

suggested that the potential for neuroplastic reorganization

increases at higher levels of the functional hierarchy.

Moreover, the absence of structural changes in the pattern of

projections to some fields of auditory cortex (A1—Chabot

et al. 2015; fAES—Meredith et al. 2016; PAF—Butler et al.

2016a) and presence of small but significant changes in

others (DZ—Kok et al. 2014; AAF—Wong et al. 2015) is

direct evidence in support of field-specific effects.

In their hierarchy of cat auditory cortex, Lee and Winer

(2011) describe A2 as a mid-level area in the ventral pro-

cessing stream that serves to relay information between

core areas and high-level multisensory and limbic fields of

auditory cortex. Evidence from the visual system suggests

that while the refinement of feed-forward pathways may be

nearly complete prenatally, feedback projections undergo

extended periods of experience-dependent plasticity

(Batardière et al. 2002) and thus remain susceptible to
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abnormal experience over longer periods. Since a signifi-

cant proportion of inputs to A2 are projections that origi-

nate in higher level auditory cortical fields (Lee and Winer

2008c, 2011), the current study sought to determine whe-

ther differential patterns of projections might underlie

changes in areal volume that occur following early- and

late-onset hearing loss.

Materials and methods

The patterns of projections to the second auditory cortex

(A2) were examined in 12 domestic short-hair cats

obtained from a USDA licensed commercial breeding

facility (Liberty Laboratories, Waverly, NY, USA). The

experimental timeline for all three groups (normal hearing,

early-onset deaf, and late-onset deaf) is provided in Fig. 3.

Four animals were deafened shortly after the onset of

hearing (mean: 22.3 days postnatal) to provide a model of

early, prelingual deafness. An additional four animals were

deafened no earlier than 9 months of age, providing a

model of hearing loss following normal auditory develop-

ment. In both cases, hearing loss was confirmed by the

absence of click-evoked activity in the auditory brainstem

response (ABR). Normal hearing animals exhibited the

presence of an ABR signal at or below 20 dB nHL. All

surgical and experimental procedures were conducted in

accordance with the Canadian Council on Animal Care’s

Guide to the Care and Use of Experimental Animals (Olfert

et al. 1993) and were approved by the University of

Western Ontario Animal Use Subcommittee of the

University Council on Animal Care.
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Fig. 1 Lateral (a) and medial (b) depictions of the left hemisphere of

the cat brain. The auditory (red), visual (purple), somatomotor (green)

and other (blue) cortical areas analysed in this study are highlighted.

The bottom of each sulcus is represented by a white line and cortex

lying along the banks of sulci is grey. Dashed lines indicate cortical

area borders. Dorso-ventral and antero-posterior axes are indicated at

the bottom of each panel. For abbreviations, see list
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Fig. 2 Lateral view of the left

hemisphere of the cat brain with

auditory cortical areas

superimposed. The second

auditory cortex (A2: blue) is

shown to undergo an expansion

following early deafness, while

the primary auditory cortex (A1:

red) occupies a smaller area

following hearing loss. Dorso-

ventral and antero-posterior

axes are indicated at bottom

center Modified from the

findings of Wong et al. (2014)
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Deafening

Permanent threshold shifts were induced ototoxically via

co-administration of kanamycin and Edecrine� (etha-

crynic acid; Valeant Pharmaceuticals, Laval, Quebec), a

procedure that results in cochlear hair cell destruction

and subsequent profound hearing loss (Xu et al. 1993).

Anaesthesia was induced through the spontaneous

inhalation of oxygen (1 L/min) and isoflurane (5% to

effect for induction; 1.5–2% for maintenance). Baseline

thresholds were measured, and ABRs were evaluated in

response to clicks (0.1 ms squarewave; range 0–80 dB

nHL) to ensure normal auditory system function. Stimuli

were presented through ER3A foam insert earbuds

(Etymotic Research, Elk Grove Village, IL, USA), and

electroencephalography (EEG) leads were placed sub-

dermally behind the ears, with a reference lead at the

vertex and a ground placed at the lower back. Kanamycin

(300 mg/kg) was injected subcutaneously, and ethacrynic

acid was infused (35–60 mg/kg to effect) via intravenous

catheter inserted into the cephalic vein of the forelimb.

The ABR response to 80 dB click stimuli was measured

continuously during infusion until the response was

abolished. At this point, ethacrynic acid infusion was

discontinued, and animals received an infusion of lac-

tated Ringer’s solution (4 mL/kg). The indwelling

catheter was then removed, and animals were allowed to

recover from anaesthesia. Follow-up ABRs were mea-

sured approximately 3 months following deafening to

confirm permanent threshold shift.

Tracer deposits

At least 8 months following the onset of deafness, or at

least 7 months of age for hearing animals, injections of the

retrograde tracer biotinylated dextran amine (BDA 3K)

were made into either the right or left hemisphere. BDA 3K

is a robust retrograde tracer that is more sensitive than

horseradish peroxidase (HRP), and which has been shown

to label afferent projections more reliably than biocytin or

neurobiotin (Lapper and Bolam 1991). Importantly, label-

ling with BDA has been shown to be stable with age, such

that group differences cannot be attributed to the age of the

animal at injection/perfusion (Rajakumar et al. 1993).

Eighteen hours prior to surgery, cats were fasted and lightly

anaesthetized with ketamine (4 mg/kg i.m.) and dexdomi-

tor (0.05 mg/kg i.m.). The anti-inflammatory agent dex-

amethasone was administered (0.05 mg/kg i.m.) and an

indwelling catheter was placed in the cephalic vein for

surgical anaesthesia. On the day of surgery, atropine

(0.02 mg/kg s.c.) was administered to minimize respiratory

and alimentary secretions, along with acepromazine

(0.02 mg/kg s.c.), dexamethasone (0.5 mg/kg i.v.), and

buprenorphine (0.01 mg/kg s.c.). Anaesthesia was induced

using sodium pentobarbital (25 mg/kg i.v. to effect). The

topical anaesthetic Cetecaine was applied to the pharyngeal

walls, and the animal was intubated. The head was shaved

and stabilized in a stereotaxic apparatus, and the animal

was prepared for surgery using aseptic procedures. Vital

signals (respiratory rate, blood pressure, heart rate) were

monitored throughout the procedure, and water-filled

heating pads (Gaymar, Orchard Park, NY, USA) were

employed to maintain a body temperature of 37 �C.
An incision was made along the midline of the skull, and

the right or left temporalis muscle was reflected laterally. A

craniotomy was opened which extended from the anterior

ectosylvian sulcus (AES) to the posterior ectosylvian sul-

cus (PES) and from the suprasylvian sulcus to the posterior

limit of the sylvian sulcus (Fig. 4). The dura was reflected

laterally, and BDA [3000 MW, (10%), Vector Laboratories

Cat# SP-1140 RRID:AB_2336249] was pressure injected

(Nanoliter 2000, World Precision Instruments, Sarasota

FL, USA) through a glass pipette. In order to ensure tracer

spread throughout the cortical field, injections were made

at three penetrations spanning the breadth of A2. At each

penetration, 150 nL deposits were made at depths of 1200

and 500 lm from the cortical surface to target deep and

superficial layers, respectively. Following each injection,

the pipette remained stationary for 3 minutes. When all six

injections were complete, the brain was photographed to

provide a record of injection sites (Fig. 4a). Following the

closure of the craniotomy with acrylic and stainless steel

skull screws, the animal was transitioned to isoflurane

anaesthesia (1.5%, spontaneously inhaled), lidocaine was

H1

H4
H3
H2

E1

E4
E3
E2

L1

L4
L3
L2

630 302418126
Age in Months

4842

Deafness Onset

BDA Injection/Perfusion

Duration of Hearing

Duration of Deafness

Fig. 3 Experimental timeline for the 12 cats examined. The duration

of hearing is illustrated in solid black lines and deafness onset is

indicated by solid black circles. The duration of deafness is

represented by red dashed lines. After a period of deafness lasting

at least 8 months, or after at least 7 months of age in hearing animals,

retrograde BDA injections were made into A2 and animals were

perfused (vertical lines)
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injected subcutaneously along the margins, and the incision

was closed. When the swallowing reflex returned, the

animal was extubated, the venous catheter was removed,

and a bolus of Ringer’s solution was given subcutaneously.

Vital signals were monitored until the animal regained

sternal recumbency, and the animal received buprenor-

phine (0.01 mg/kg s.c.) every 6 h for the first 24 h, and

every 12 h for the subsequent 72 h. Animals received

dexamethasone every 24 h after surgery for 5 days

(0.05 mg/kg s.c. on postsurgical day one, decreasing by

0.01 mg/kg daily thereafter). In all cases, recovery was

uneventful.

Perfusion and tissue processing

Ten to fourteen days following tracer injection, a catheter

was placed in the cephalic vein and animals were deeply

anaesthetized with sodium pentobarbital (30 mg/kg i.v.).

Heparin (1 mL; anticoagulant) and 1% sodium nitrite

(1 mL; vasodilator) were administered subcutaneously, and

animals were intracardially perfused through the ascending

aorta with 1 L of physiological saline, 2 L of fixative (4%

paraformaldehyde), and 2 L of cyroprotective solution

(10% sucrose). Each solution was buffered to a pH of 7.4

with 0.1 M Sorenson’s buffer and was infused at a rate of

100 mL/min. Following perfusion, the head was mounted

in a stereotaxic frame, and the brain was exposed, pho-

tographed (Fig. 4b), and blocked in the coronal plane at

Horsley-Clarke level A27 (Horsley and Clarke 1908). The

brain was removed and immersed in a 30% sucrose solu-

tion until it sunk (* 1 week) to provide cryoprotection for

histological processing.

Each brain was frozen and sectioned in the coronal

plane at a thickness of 60 lm using a Leica CM 3050 s

(Leica Microsystems, Nussloch, Germany) cryostat. A total

of six series were collected at 360 lm intervals: one

immunohistochemically processed for the presence of

BDA using the avidin–biotin–peroxidase method (Covance

Research Products Inc.) with nickel–cobalt intensification

(Veenman et al. 1992); one processed using the mono-

clonal antibody SMI-32 (Covance Research Products Inc;

Sternberger and Sternberger 1983) to assist with laminar

and areal delineation; one processed for cytochrome oxi-

dase (Payne and Lomber 1996) and another using cresyl

violet stain for Nissl bodies to assist with cortical and

thalamic delineation; and two series that served as spares to

be processed as necessary. Each reacted series was

mounted onto gelatin-coated slides, air-dried, cleared, and

coverslipped.

Data analysis

A Nikon E600 microscope equipped with Nomarski DIC

imaging and a DXM 1200 digital camera was used to

visualize BDA-labeled neurons. Tissue and injection site

outlines were created using a motorized stage controlled by

Neurolucida software (RRID:nif-0000-10294). A compre-

hensive search paradigm embedded in Neurolucida was

used to ensure complete sampling during quantification.

Neurons were counted only if the entirety of the soma was

labelled, minimizing artefacts of the reaction process and

ensuring a conservative estimate of neuronal projections

(Fig. 5). Neurons immediately surrounding the injection

site were not counted to avoid the inclusion of artefactual

labelling. Further, cells later determined to be located

within A2 were eliminated from further analysis (i.e. were

not included in the total number of labelled cells when

determining the proportion of cells within a given cortical

or thalamic area). The full thickness of each section was

examined by inspecting focal levels throughout the z-plane.

Labelled neurons were then attributed to cortical and

thalamic areas on an individual-animal basis using sulcal

and gyral patterns along with cytoarchitectural landmarks.

SMI-32 is a monoclonal antibody with a high affinity for a

dephosphorylated epitope on the medium- and high-

molecular-weight subunits of neurofilament proteins

Fig. 4 Injection locations in

A2. a Shows the exposed left

A2 following craniotomy and

BDA injection (H2). The

asterisks indicate the locations

of the three penetrations.

b Shows a lateral view of the

cerebrum post-perfusion from

the same animal. The perimeter

of A2 is noted by a black dashed

line. AES anterior ectosylvian

sulcus, PES posterior

ectosylvian sulcus, SSS

suprasylvian sulcus, SS sylvian

sulcus
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(Sternberger and Sternberger 1983). Patterns of SMI-32

labelling differ by area in the visual and auditory cortex

(van der Gucht et al. 2001; Mellott et al. 2010) as well as

the thalamus (Bickford et al. 1998), and are preserved

following hearing loss (Wong et al. 2014). Borders

between auditory and somatosensory cortices are distin-

guished by a marked increase in SMI-32 reactivity (van

der Gucht et al. 2001), and borders between somatosen-

sory cortical fields are delineated using Nissl labelling

profiles (Clascá et al. 1997). Borders between the poste-

rior lateral suprasylvian areas (PLLS and PMLS) and the

dorsal and ventral lateral suprasylvian areas (DLS and

VLS, respectively) of visual cortex were placed on the

lateral bank of the middle suprasylvian sulcus and the

dorsal bank of the posterior limb of the suprasylvian

sulcus, respectively (as per Palmer et al. 1978; Rau-

schecker et al. 1987). Neurons at the border between two

cortical or thalamic areas were distributed equally to each

of the two areas.

Complete labelling profiles for each of the three

groups examined were contrasted to determine whether

any significant differences in the patterns of projections

exist. In order to simplify visual comparisons between

groups, labelled neurons were plotted on standardized

slices, with labelled cells repositioned to lie in the cor-

rect cortical areas. Separate analyses of variance were

computed to determine whether group-level differences

existed in the pattern of projections at the level of

individual cortical and thalamic fields and at the level of

modality of origin.

Results

Injection sites and tracer spread

Twelve cats received injections of the retrograde neu-

roanatomical tracer BDA 3K throughout all six layers of

the second auditory cortex (A2) to ensure uptake at axon

terminals. Three injection tracks were placed along a line

from the anterior to posterior extents of the field, while

ensuring that the spread of BDA was restricted to the field

of interest. In all cases, tracer spread was observed across

all cortical layers, with no evidence of tracer deposits in

any cortical area beyond A2 (Figs. 6, 7).

Summary of projections in hearing animals

and comparison to existing literature

The patterns of thalamocortical (Lee and Winer 2008a) and

corticocortical (Lee and Winer 2008c) projections to A2

have been previously examined. However, these studies

quantified only those projections arising from auditory

thalamic and cortical regions in normal hearing animals. In

the current study, neurons labelled by an injection of BDA

into A2 were assigned to cortical and thalamic areas of

origin across the entire hemisphere ipsilateral to the

injection site. These cells were then counted and converted

to a proportion of total labelled cells on an individual

animal basis to allow for comparisons across animals

despite variability in tracer uptake or immunohistochemi-

cal visualization of labelled cells. An example labelling

profile from a normal hearing animal is presented in Fig. 8.

In accordance with Lee and Winer (2008a), we found that

thalamic projections to A2 arose principally from the

dorsal division of the medial geniculate body (MGBd),

with a smaller number of labelled cells observed in the

medial (MGBm) and ventral divisions (MGBv; Fig. 9).

However, the pattern of projections arising from auditory

cortical regions differs considerably from previous work

(Lee and Winer 2008c); while the predominant inputs to

A2 were previously shown to originate in the ventral

auditory field (VAF), and in the dorsal and intermediate

divisions of the posterior ectosylvian gyrus (dPE and iPE,

respectfully), the current study suggests that the principle

input to A2 arises from the auditory field of the anterior

ectosylvian sulcus (fAES), with a smaller number of

labelled cells observed in each of the remaining 11 auditory

cortical areas (Fig. 10). Interestingly, A2 was also recently

shown to be one of the principle inputs to fAES (Meredith

et al. 2016), a reciprocal connection that Lee and Winer

DZ

A1
I

II-III

IV

V

VI

Fig. 5 Labelled neurons in the auditory cortex (dorsal zone and

adjacent primary auditory cortex) following injection of BDA into

A2. Black arrows indicate labelled neurons. In order to be counted,

the nucleus had to be visible and the entirety of the somatic

membrane needed to be present. Red arrows indicate neurons too faint

to be counted or artefactual staining
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(2008c) failed to observe. The source of this discrepancy is

unclear; the current study defined areal borders using SMI-

32 staining profiles rather than the Nissl-stained sections

used by Lee and Winer; in our hands SMI-32 provides

much more clearly defined cortical boundaries which may

have influenced the areas to which labelled cells were

assigned. Because the current study quantified only those

labelled cortical neurons ipsilateral to the injection site, we

cannot comment on commissural projections to A2, which

have previously been shown to originate overwhelmingly

from the contralateral A2 (Lee and Winer 2008b).

Crossmodal connectivity

The current study is the first to quantify projections to A2

in the cat that arise from non-auditory cortical areas. In

normal hearing animals, projections from visual cortical

regions arose overwhelmingly from the anterior ectosyl-

vian visual area (AEV) with fewer cells observed in area

21b and in the posterolateral lateral suprasylvian visual

area (PLLS; Fig. 11). Small somatosensory projections

were observed in the second, second medial, and fourth

somatosensory areas (S2, S2m, and S4, respectively;

Fig. 12). Finally, a small but significant number of labelled

cells were observed in Area 36 of the perirhinal cortex

(Fig. 13), part of the principle route by which information

is passed between the cortex and the hippocampi.

Effects of hearing loss

In addition to quantifying non-auditory projections to A2,

this study sought to measure changes in thalamocortical

and corticocortical connectivity that arise as a consequence

of early- and late-onset deafness. Representative labelling

profiles for early- and late-deaf animals are presented in

Figs. 14 and 15, respectively. Across modalities, the mean

proportions of labelled cells in a given cortical or thalamic

region were strikingly similar to those values observed in

normal hearing animals. Some very small differences were

observed between early-deaf and normal hearing animals

[e.g. increased projections from the visual cortical antero-

lateral lateral suprasylvian area (ALLS; Fig. 11) and sec-

ond somatosensory area (S2; Fig. 12)]; however, a mixed

model analysis of variance with area of origin as a within-

subjects factor and hearing status as a between-subjects

factor revealed no significant interactions between group

and any of the regions examined [F(78,351) = 0.949,

p = 0.60].

Summary-level projections to A2

In order to quantify the projections to A2 by modality of

origin, labelled cells were classified as arising from audi-

tory, visual, somatomotor, or other cortical regions of the

brain (as outlined in Fig. 1). Projections arising from

auditory (MGBd, MGBm, MGBv), visual (PO, SGM), and

multisensory (LP) thalamic nuclei were grouped to repre-

sent the thalamic input to A2. For each animal, these

summary values were divided by the total number of

labelled cells in the brain (ipsilateral to the injection site,

after subtracting those labelled cells located within the

borders of A2 itself), and the mean proportion of cells

arising from each cortical/thalamic region was then cal-

culated. Figure 16 illustrates these summary-level esti-

mates for each group. Across all groups examined, the

majority of projections to A2 arise from auditory cortical

regions (NH: 56.3%; ED: 59.3%; LD 68.6%), with an

additional large thalamic input (NH: 29.3%; ED: 24.3%;

LD 19.8%). However, in each group more than 10% of the

cells labelled by an injection in A2 were located in non-

auditory cortical areas, with the majority of these projec-

tions originating in visual cortex (NH: 9.5%; ED: 11.3%;

Fig. 6 Photomicrographs of

coronal sections through A2

showing a representative

injection site (E4). a Shows a

section reacted for BDA and

demonstrating the injection

spread. Tracer was limited to

the boundaries of A2, and

spanned all six layers of

neocortex. The section in b was

stained with Nissl, and was used

along with SMI-32 and CO (not

shown) to identify cortical and

thalamic borders
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LD 7.0%). While there are some small differences in these

summary-level estimates between experimental groups, a

mixed model analysis of variance with gross area of origin

as a within-subjects factor and hearing status as a between-

subjects factor failed to reveal any significant interaction

[F(8,36) = 1.775, p = 0.12].

Discussion

The second auditory cortex (A2) is a mid-level field within

the hierarchy of auditory processing. Electrophysiological

examinations designed to characterize the response prop-

erties of A2 neurons have demonstrated a lack of any clear

tonotopic organization (Merzenich et al. 1975; Reale and

Imig 1980). Moreover, A2 neurons appear more broadly

tuned (Imig and Reale 1980) and less sensitive (Schreiner

and Cyander 1984) than those in the primary auditory

cortex. While a number of functional assessments have

been undertaken, few studies have examined the anatomi-

cal connectivity to A2. Lee and Winer provided detailed

descriptions of thalamocortical (2008a), commissural

(2008b), and corticocortical (2008c) connectivity; how-

ever, their work was confined to auditory brain regions. In

contrast to their findings, the current study provides evi-

dence for a robust projection arising from the auditory field

of the anterior ectosylvian sulcus (fAES). Interestingly, a

recent study by Meredith et al. (2016) also described A2 as

Hearing Early Deaf Late Deaf

D

P

V

A

2mm

H1

H2

H3

H4

E1

E2

E3

E4

L1

L2

L3

L4

Fig. 7 Illustration of tracer

spread for each animal included

in the present study. Individual

A2 borders (dashed lines) and

tracer spreads (red) have been

plotted on four standardized

sections to allow for comparison

between animals and

experimental groups. Inset:

lateral view of the cat cortex.

Solid lines show the

approximate locations of the

sections shown. Gray shaded

area indicates the location of A2
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the principle auditory cortical input to fAES—another

projection that was not previously documented. In the cat,

fAES is primarily responsive to auditory stimuli, but con-

tains a subset of cells that respond to multisensory stimu-

lation (Meredith et al. 2011). fAES is also a major source

of auditory cortical input to the superior colliculi (Meredith

and Clemo 1989; Chabot et al. 2013; Butler et al. 2016b)

and thus is expected to contribute to orienting and local-

ization behaviours (Malhotra et al. 2004; Meredith et al.

2011). Interestingly, A2 is considered to be part of the

Fig. 8 Representative distribution of labelled neurons projecting to

the second auditory cortex of a hearing cat (H4). Colour-coded dots

represent labelled neurons from auditory (red), visual (purple),

somatomotor (green), and other (blue) cortical areas, as well as

projections from auditory thalamus (yellow). Injection spread in A2 is

shown in gray. Bottom right: a lateral brain view showing the selected

levels from which the mapped coronal sections were taken
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auditory ventral pathway, contributing to object identifi-

cation, while fAES has been placed within the dorsal

‘‘where’’ pathway (e.g. Lee and Winer 2011); this classi-

fication is reinforced by behavioural evidence that rever-

sible deactivation of fAES significantly impairs sound

localization in the contralateral hemifield, while

deactivating A2 has no measureable effect (Malhotra et al.

2004). However, this functional dissociation is in contrast

to the strong anatomical connectivity described above, and

electrophysiological evidence that individual units in A2

and fAES show strikingly similar tuning both for locations

along the azimuth (Middlebrooks et al. 1998), and for
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stimulus elevation (Xu et al. 1998). This may reflect a

significant point of intersection between the dorsal and

ventral auditory streams where information about the

location of an object is used to inform that identity of the

sound source (e.g. a rustling sound originating from above

the head may suggest a bird, while one originating from

below may more likely be a mouse), and vice versa.

Alternatively, A2 may play a more direct role in sound

localization that previous work failed to capture due to

issues with sensitivity or stimulus design.

In addition to quantifying connectivity within auditory

cortex, the current study revealed that 14.5% of the cells

labelled by retrograde BDA injection in A2 are located

outside of auditory cortical and thalamic areas, with the

largest single projection arising from the anterior ectosyl-

vian visual area (AEV). AEV is a nonretinotopic, feature-

mapping area in which cells sensitive to motion direction

and/or motion contrast functionally relate the motor and

limbic systems, contributing to orienting behaviour

(Scannell et al. 1996). The second largest visual input to

A2 arose from PLLS, an area that shows directionally

sensitive responses to high-velocity moving visual stimuli

(von Grünau et al. 1987), and in which bimodal and sub-

threshold multisensory activity has been recorded (Clemo

et al. 2008). Reciprocal connections from A2 to PLLS have

also been documented (Clemo et al. 2008); moreover,

dense connectivity between PLLS and cortical regions

along the anterior ectosylvian sulcus (including fAES and

AEV) has been described (Scannell et al. 1995). These

auditory and visual cortical projections (Fig. 17) collec-

tively suggest a role for A2 in the perception of, and ori-

entation toward, complex stimuli. In accordance with its

placement within the ventral stream, it is possible that A2

is primarily involved in sound identification, but incorpo-

rates multimodal information regarding the location and

motion of stimuli to inform these percepts. Alternatively, it

remains possible that A2 instead contributes to dorsal

stream processing; the anatomical hierarchy constructed

previously (Lee and Winer 2011) did not examine extra-

modal inputs to this field, nor did it capture large-scale

reciprocal connectivity between A2 and high-level dorsal

stream areas like fAES (Meredith et al. 2016; this study).

Moreover, while Lee and Winer place primary auditory

cortex (A1; dorsal stream) and A2 in distinct pathways

based on weak connectivity between the regions, there is

electrophysiological evidence of robust bilateral interac-

tions between the two areas (Carrasco and Lomber 2010).

Finally, the absence of localization deficits following A2

deactivation was based on a single task (localization in the

azimuth; Malhotra et al. 2004) such that the direct contri-

bution of A2 may not have been explicitly examined. It

should be noted that electrophysiological data were col-

lected from the hemisphere contralateral to the injection

site and thus, only ipsilateral projections were character-

ized in the current study. Moreover, our analysis was

limited to cortical and thalamic inputs and thus did not

quantify inputs arising from lower level brain structures

(but see Rouiller et al. 1989).

Experience-dependent plasticity

In addition to examining non-auditory cortical connectivity

to the A2 in hearing animals, the current study sought to
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determine whether patterns of projections to this area are

altered by the onset of hearing loss. The anatomical and

functional consequences of sensory loss have been topics

of interest across sensory modalities and models (e.g.

Merzenich et al. 1984; Karlen et al. 2006; Charbonneau

et al. 2012). However, it remains a challenge to draw

overarching conclusions regarding the mechanisms under-

lying crossmodal plasticity from this body of work, due in

part to apparent differences between species and sensory

systems (see recent reviews by Mezzera and Lopez-
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Bendito 2016; Meredith and Lomber 2017). It is, however,

well established that the absence of auditory input results in

functional reorganization of auditory cortical areas in both

humans (Neville et al. 1983; Levänen et al. 1998; Finney

et al. 2001; Lee et al. 2001; Levänen and Hamdorf 2001;

Lambertz et al. 2005; Pekkola et al. 2005; Bhattacharjee

et al. 2010; Karns et al. 2012) and animal models (Hunt

et al. 2006; Allman et al. 2009; Lomber et al. 2010, 2011;
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Meredith et al. 2011; Meredith and Lomber 2011). While

these studies have not yet provided evidence of crossmodal

reorganization in A2, there are reasons to believe this field

might be altered by the onset of hearing loss. For example,

the functional organization of A2 has been shown to be

highly variable between animals; Schreiner and Cyander

(1984) note that this variability (which exceeds that

observed in adjacent cortical fields like A1) suggests that

A2 is more likely to undergo experience-dependent plas-

ticity than less variable fields. Moreover, A2 was shown to

undergo an expansion in areal volume following the early

onset of hearing loss while the majority of areas were either

reduced in size or were unchanged (Wong et al. 2014).

Despite this, the current study found no evidence of a

significant change in the pattern of projections to A2 fol-

lowing the onset of hearing loss. Across modalities, the

number of labelled cells in a given cortical or thalamic area

remained the same, even when deafness coincided with the

onset of hearing. Moreover, the relative contributions

across sensory modalities were stable across groups. It

should be noted that in order to ensure injections were

confined within the borders of A2, the specific pattern of

projections to the border areas of A2 was not examined in

the current study and remains an area of interest for future

exploration. Importantly, the brief period of hearing

experience that occurs between canal opening and deaf-

ening in early-deaf animals is expected to have minimal

impact given evidence from previous comparisons between

early-deaf and congenitally deaf animals (Butler et al.

2017).

It is worth noting that the absence of change in the

number of crossmodal projections does not preclude

functional reorganization in A2. For example, both the

posterior auditory field (PAF; Lomber et al. 2010) and

fAES (Meredith et al. 2011) have been shown to contribute

to enhanced peripheral visual perception in deaf cats

(Lomber et al. 2010), despite recent studies that failed to

document any substantial changes in the pattern of cross-

modal connectivity to these areas in deaf animals relative

to normal hearing controls (Meredith et al. 2016; Butler

et al. 2016a, 2017). Interestingly, it has also been noted that

much of the anatomical connectivity thought to depend

upon the onset of normal function in the visual cortex [e.g.

the establishment of retinotopic maps in V1 (Striem-Amit

et al. 2015)] is preserved in the congenitally blind, despite

evidence of crossmodal reorganization (e.g. Sadato et al.

2002; Amedi et al. 2003). These apparent disparities sug-

gest that, rather than arising from large-scale differences in

cortical connectivity, functional reorganization may be the

result of synapse-level structural changes to existing con-

nections or the unmasking/enhancement of synaptic activ-

ity that normally provides subthreshold crossmodal input.

Some evidence for this hypothesis was recently provided

by Clemo et al. (2016), who demonstrated that spine den-

sity of neurons in fAES is increased in deaf animals

compared to normal hearing controls. Interestingly, this

difference was shown to be limited to dendrites in supra-

granular neurons, suggesting a role in altered

corticocortical communication. This occurred in the

absence of change in overall connectivity to this cortical

region (Meredith et al. 2016). Moreover, a similar increase

in the spine density of supragranular neurons was recently

identified in primary auditory cortex (Clemo et al. 2017).

While the current study was not designed to test synapse-

level hypotheses, future anatomical and functional
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examinations in A2 could help resolve the pattern of

change that underlies the expansion in fractional volume

observed in A2 and may inform how crossmodal reorga-

nization occurs following sensory loss.

Conclusions

Following an injection of BDA into the second auditory

cortex, labelled neurons throughout the brain were quan-

tified, and the pattern of projections was compared between

normal hearing animals and those with early- and late-

onset deafness. In the normal hearing brain, the primary

auditory and visual areas projecting to A2 suggest a role in

orienting to stimuli in the multisensory environment.

Importantly, this pattern of projections is maintained fol-

lowing the onset of hearing loss, suggesting that (1) the

absence of sound-evoked neural activity does not initiate

large-scale crossmodal reorganization in this field, and (2)

the anatomical connectivity that underlies normal hearing

may support the resumption of sound processing following

cochlear implantation.
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