916 research outputs found

    A Tensor-Based Forensics Framework for Virtualized Network Functions in the Internet of Things: Utilizing Tensor Algebra in Facilitating More Efficient Network Forensic Investigations

    Get PDF
    With the ever-increasing network traffic and Internet connectivity of smart devices, more attack events are being reported. As a result, network forensics remains a topic of ongoing research interest in the Internet of Things (IoT). In this article, we present a novel tensor-based forensics approach for virtualized network functions (VNFs). An event tensor model is proposed to formalize the network events, and then, it is used for effectively updating the core event tensor. We then introduce a similarity tensor model to integrate the core event tensors on the orchestration and management layer in the network function virtualization (NFV) framework. Finally, we present an evidence tensor model for network forensics, where we demonstrate how evidence tensors can be merged

    The influence of inter-ply friction during double-diaphragm forming of biaxial NCFs

    Get PDF
    Inter-ply friction plays an important role in the formation of defects in automated preforming of complex components, as relative sliding between plies can generate local compressive stresses in the direction of the primary yarns, leading to out-of-plane wrinkling and other defects such as fibre buckling and bridging.This work presents a novel characterisation method for measuring the coefficient of friction at fabric-fabric interfaces, using a set up that can generate inter-ply slip conditions representative of those experienced during double diaphragm forming. Results for a pillar stitched, biaxial NCF indicate the sensitivity of the coefficient of friction to the level of applied compaction pressure generated by the diaphragm. Friction values are observed to be typically 100% higher than those recorded using a conventional sled test (ASTM D1894). Additionally, this behaviour is dependent on the relative fibre orientation at the inter-ply interface, which affects the nesting/compaction behaviour of the plies. This has been confirmed using optical micrographs and through-thickness compaction tests.The significance of these orientation and pressure dependencies has been studied using a modified hemisphere forming rig to control the degree of inter-ply slip. Results from the test indicate that punch force is dependent on the fibre angles at the inter-ply interface, and that variation in the local friction behaviour can affect the formability of a component and induce unwanted defects

    Double diaphragm forming simulation using a global-to-local modelling strategy for detailed defect detection in large structures

    Get PDF
    A global-to-local modelling strategy is presented based on a sub-modelling approach to predict the formation of macroscale defects in bi-axial non-crimp fabric (NCF) during double diaphragm forming (DDF). A full-scale global simulation is initially performed using a coarse membrane element mesh (5 mm edge length) to locate areas containing potential defects. Refined local simulations are subsequently performed using high a fidelity shell-element mesh (1 mm edge length) to explicitly predict the shape of forming induced defects in these areas, using boundary conditions derived from the global simulation. The methodology is validated by forming a fabric blank over a generic geometry comprising local changes in cross-sectional shape, in order to invoke forming induced defects in a controlled manner. The defective areas predicted by the simulation agree well with the locations observed from the forming experiments, including the shape and length of surface visible defects such as fabric wrinkling and bridging. The CPU time for this two-stage approach is shown to be approximately 13% compared to the CPU time required for the high fidelity full-scale model for the same geometry

    Simulating the effect of fabric bending stiffness on the wrinkling behaviour of biaxial fabrics during preforming

    Get PDF
    A macroscopic finite element model has been established to investigate the forming-induced wrinkling behaviour for bi-axial fabrics. Results indicate that using a linear bending model with a constant bending stiffness produces unrealistic wrinkle patterns in the fabric plies. A non-linear bending model produces more accurate forming induced wrinkle patterns compared to experimental data, since the bending stiffness parameter is varied as a function of the applied forming load to account for the onset of fibre buckling. Areas of high in-plane shear are more likely to induce out-of-plane wrinkles, indicating a positive correlation between wrinkling onset and shear deformation. A new methodology has been developed to quantitatively evaluate the severity of fabric wrinkles based on the FE simulation results. The distance between the surface of the preform and the mould tool is used to locate areas with out-of-plane defects, using the principal curvature to isolate wrinkles from areas of fabric bridging (poor conformity)

    Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern

    Get PDF
    To capture the asymmetrical shear behaviour of a bi-axial NCF with a pillar stitch, a non-orthogonal constitutive model was developed and implemented in finite element forming simulations. Preforming experiments indicate that the local distribution of defects is significantly different on both sides of each bi-axial ply, with two different defect mechanisms observed. Correlation with simulation results indicates that one defect type is caused by excessive shear, inducing out-of-plane wrinkling in regions of positive shear (macro-scale wrinkling). The other defect type is caused by fibre compression, inducing in-plane wrinkling in regions of negative shear (meso-scale wrinkling). Local distributions of shear angle and wrinkling strain were used to determine the wrinkling mode and to confirm the corresponding defect mechanism. Results indicate that simulations based on the advanced constitutive model can predict local shear angles within ±5°of experimental values and that predicted wrinkling positions and defect types correlate well with the experiments

    Optimisation of local in-plane constraining forces in double diaphragm forming

    Get PDF
    Rigid blocks (risers) were introduced in the double diaphragm forming (DDF) process to change the local in-plane strain distribution in the diaphragms, aimed at reducing wrinkling defects in the production of fabric preforms. A two-step optimisation method was developed to determine the position and dimension of each riser. In Step I, optimisation of the riser position was conducted using a simplified finite element (FE) model coupled with a genetic algorithm (GA). The height of each riser was optimised in Step II using a detailed FE model with the optimised riser positions from Step I. For demonstration, a hemisphere preform was manufactured by DDF using the optimum riser arrangement established by the optimisation routine. Results indicate that the optimum riser pattern (shape and position relative to the component boundary) can dramatically improve the preform quality through reduction of out-of-plane wrinkles, validating the feasibility of the two-step routine

    Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit

    Get PDF
    This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB) model of plasma physics. This model consists of the pressureless gas dynamics equations coupled with the Poisson equation and where the Boltzmann relation relates the potential to the electron density. If the quasi-neutral assumption is made, the Poisson equation is replaced by the constraint of zero local charge and the model reduces to the Isothermal Compressible Euler (ICE) model. We compare a numerical strategy based on the EPB model to a strategy using a reformulation (called REPB formulation). The REPB scheme captures the quasi-neutral limit more accurately
    • …
    corecore