1,586 research outputs found

    On Selecting and Scheduling Assembly Plans Using Constraint Programming

    Get PDF
    This work presents the application of Constraint Programming to the problem of selecting and sequencing assembly operations. The set of all feasible assembly plans for a single product is represented using an And/Or graph. This representation embodies some of the constraints involved in the planning problem, such as precedence of tasks, and the constraints due to the completion of a correct assembly plan. The work is focused on the selection of tasks and their optimal ordering, taking into account their execution in a generic multi-robot system. In order to include all different constraints of the problem, the And/Or graph representation is extended, so that links between nodes corresponding to assembly tasks are added, taking into account the resource constraints. The resultant problem is mapped to a Constraint Satisfaction Problem (CSP), and is solved using Constraint Programming, a powerful programming paradigm that is increasingly used to model and solve many hard real-life problems

    A Pomset-Based Model for Estimating Workcells' Setups in Assembly Sequence Planning

    Get PDF
    This paper presents a model based on pomsets (partially ordered multisets) for estimating the minimum number of setups in the workcells in Assembly Sequence Planning. This problem is focused through the minimization of the makespan (total assembly time) in a multirobot system. The planning model considers, apart from the durations and resources needed for the assembly tasks, the delays due to the setups in the workcells. An A* algorithm is used to meet the optimal solution. It uses the And/Or graph for the product to assemble, that corresponds to a compressed representation of all feasible assembly plans. Two basic admissible heuristic functions can be defined from relaxed models of the problem, considering the precedence constraints and the use of resources separately. The pomset-based model presented in this paper takes into account the precedence constraints in order to obtain a better estimation for the second heuristic function, so that the performance of the algorithm could be improved

    On the Red-Green-Blue Model

    Full text link
    We experimentally study the red-green-blue model, which is a sytem of loops obtained by superimposing three dimer coverings on offset hexagonal lattices. We find that when the boundary conditions are ``flat'', the red-green-blue loops are closely related to SLE_4 and double-dimer loops, which are the loops formed by superimposing two dimer coverings of the cartesian lattice. But we also find that the red-green-blue loops are more tightly nested than the double-dimer loops. We also investigate the 2D minimum spanning tree, and find that it is not conformally invariant.Comment: 4 pages, 7 figure

    A Genetic Algorithm for Assembly Sequence Planning

    Get PDF
    This work presents a genetic algorithm for assembly sequence planning. This problem is more difficult than other sequencing problems that have already been tackled with success using these techniques, such as the classic Traveling Salesperson Problem (TSP) or the Job Shop Scheduling Problem (JSSP). It not only involves the arranging of tasks, as in those problems, but also the selection of them from a set of alternative operations. Two families of genetic operators have been used for searching the whole solution space. The first includes operators that search for new sequences locally in a predetermined assembly plan, that of parent chromosomes. The other family of operators introduces new tasks in the solution, replacing others to maintain the validity of chromosomes, and it is intended to search for sequences in other assembly plans. Furthermore, some problem-based heuristics have been used for generating the individuals in the population

    Ergogenic and psychological effects of synchronous music during circuit-type exercise

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below.Objectives: Motivational music when synchronized with movement has been found to improve performance in anaerobic and aerobic endurance tasks, although gender differences pertaining to the potential benefits of such music have seldom been investigated. The present study addresses the psychological and ergogenic effects of synchronous music during circuit-type exercise. Design: A mixed-model design was employed in which there was a within-subjects factor (two experimental conditions and a control) and a between-subjects factor (gender). Methods: Participants (N ¼ 26) performed six circuit-type exercises under each of three synchronous conditions: motivational music, motivationally-neutral (oudeterous) music, and a metronome control. Dependent measures comprised anaerobic endurance, which was assessed using the number of repetitions performed prior to the failure to maintain synchronicity, and post-task affect, which was assessed using Hardy and Rejeski’s (1989) Feeling Scale. Mixed-model 3 (Condition) X 2 (Gender) ANOVAs, ANCOVAs, and MANOVA were used to analyze the data. Results: Synchronous music did not elicit significant (p < .05) ergogenic or psychological effects in isolation; rather, significant (p < .05) Condition X Gender interaction effects emerged for both total repetitions and mean affect scores. Women and men showed differential affective responses to synchronous music and men responded more positively than women to metronomic regulation of their movements. Women derived the greatest overall benefit from both music conditions. Conclusions: Men may place greater emphasis on the metronomic regulation of movement than the remaining, extra-rhythmical, musical qualities. Men and women appear to exhibit differential responses in terms of affective responses to synchronous music

    Critical behavior of the planar magnet model in three dimensions

    Full text link
    We use a hybrid Monte Carlo algorithm in which a single-cluster update is combined with the over-relaxation and Metropolis spin re-orientation algorithm. Periodic boundary conditions were applied in all directions. We have calculated the fourth-order cumulant in finite size lattices using the single-histogram re-weighting method. Using finite-size scaling theory, we obtained the critical temperature which is very different from that of the usual XY model. At the critical temperature, we calculated the susceptibility and the magnetization on lattices of size up to 42342^3. Using finite-size scaling theory we accurately determine the critical exponents of the model and find that ν\nu=0.670(7), γ/ν\gamma/\nu=1.9696(37), and β/ν\beta/\nu=0.515(2). Thus, we conclude that the model belongs to the same universality class with the XY model, as expected.Comment: 11 pages, 5 figure

    More is the Same; Phase Transitions and Mean Field Theories

    Full text link
    This paper looks at the early theory of phase transitions. It considers a group of related concepts derived from condensed matter and statistical physics. The key technical ideas here go under the names of "singularity", "order parameter", "mean field theory", and "variational method". In a less technical vein, the question here is how can matter, ordinary matter, support a diversity of forms. We see this diversity each time we observe ice in contact with liquid water or see water vapor, "steam", come up from a pot of heated water. Different phases can be qualitatively different in that walking on ice is well within human capacity, but walking on liquid water is proverbially forbidden to ordinary humans. These differences have been apparent to humankind for millennia, but only brought within the domain of scientific understanding since the 1880s. A phase transition is a change from one behavior to another. A first order phase transition involves a discontinuous jump in a some statistical variable of the system. The discontinuous property is called the order parameter. Each phase transitions has its own order parameter that range over a tremendous variety of physical properties. These properties include the density of a liquid gas transition, the magnetization in a ferromagnet, the size of a connected cluster in a percolation transition, and a condensate wave function in a superfluid or superconductor. A continuous transition occurs when that jump approaches zero. This note is about statistical mechanics and the development of mean field theory as a basis for a partial understanding of this phenomenon.Comment: 25 pages, 6 figure

    Scale Setting in QCD and the Momentum Flow in Feynman Diagrams

    Get PDF
    We present a formalism to evaluate QCD diagrams with a single virtual gluon using a running coupling constant at the vertices. This method, which corresponds to an all-order resummation of certain terms in a perturbative series, provides a description of the momentum flow through the gluon propagator. It can be viewed as a generalization of the scale-setting prescription of Brodsky, Lepage and Mackenzie to all orders in perturbation theory. In particular, the approach can be used to investigate why in some cases the ``typical'' momenta in a loop diagram are different from the ``natural'' scale of the process. It offers an intuitive understanding of the appearance of infrared renormalons in perturbation theory and their connection to the rate of convergence of a perturbative series. Moreover, it allows one to separate short- and long-distance contributions by introducing a hard factorization scale. Several applications to one- and two-scale problems are discussed in detail.Comment: eqs.(51) and (83) corrected, minor typographic changes mad

    Resummation of mass terms in perturbative massless quantum field theory

    Get PDF
    The neutral massless scalar quantum field Φ\Phi in four-dimensional space-time is considered, which is subject to a simple bilinear self-interaction. Is is well-known from renormalization theory that adding a term of the form m22Φ2-\frac{m^2}{2} \Phi^2 to the Lagrangean has the formal effect of shifting the particle mass from the original zero value to m after resummation of all two-leg insertions in the Feynman graphs appearing in the perturbative expansion of the S-matrix. However, this resummation is accompanied by some subtleties if done in a proper mathematical manner. Although the model seems to be almost trivial, is shows many interesting features which are useful for the understanding of the convergence behavior of perturbation theory in general. Some important facts in connection with the basic principles of quantum field theory and distribution theory are highlighted, and a remark is made on possible generalizations of the distribution spaces used in local quantum field theory. A short discussion how one can view the spontaneous breakdown of gauge symmetry in massive gauge theories within a massless framework is presented.Comment: 15 pages, LaTeX (style files included), one section adde
    corecore