On Selecting and Scheduling Assembly Plans
Using Constraint Programming

Carmelo Del Valle', Antonio A. Mérquezz, Rafael M. Gasca', and Miguel Toro'

' Dept. Lenguajes y Sistemas Informaticos, Univ. Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{carmelo, gasca, mtoro}@lsi.us.es
? Dept. Ingenieria Electronica, Sistemas Informaticos y Automatica, Univ. Huelva
Campus de La Réabida. Ctra. Huelva-Palos de la Frontera, 21071 Palos Fra. - Huelva
amarquez@uhu.es

Abstract. This work presents the application of Constraint
Programming to the problem of selecting and sequencing assembly
operations. The set of all feasible assembly plans for a single product is
represented using an And/Or graph. This representation embodies some
of the constraints involved in the planning problem, such as precedence
of tasks, and the constraints due to the completion of a correct assembly
plan. The work is focused on the selection of tasks and their optimal
ordering, taking into account their execution in a generic multi-robot
system. In order to include all different constraints of the problem, the
And/Or graph representation is extended, so that links between nodes
corresponding to assembly tasks are added, taking into account the
resource constraints. The resultant problem is mapped to a Constraint
Satisfaction Problem (CSP), and is solved wusing Constraint
Programming, a powerful programming paradigm that is increasingly
used to model and solve many hard real-life problems.

1 Introduction

Constraint Programming (CP) is a powerful programming paradigm that is
increasingly used to model and solve many hard real-life problems. This work
presents the application of CP to the problem of selecting and sequencing assembly
tasks. This is a more difficult planning problem than others that have been tackled
extensively in the literature using these techniques, such as the Job Shop Scheduling
Problem (JSSP) and the Travelling Salesman Problem (TSP) [1] [2], since it involves
not only the optimal arrangement of tasks, as in those problems, but also the selection
of them from a set of alternatives. There has been little attention to this issue [3], so
that the development of efficient CSP techniques considering it is of special interest.
The work is focused on the selection of tasks and their optimal ordering, taking
into account their execution in a generic multi-robot system. The objective is the
minimization of the total assembly time (makespan) [4], so that all factors that can

have an influence on it are taken into account: durations of tasks and use of resources
among other additional elements.

The set of all feasible assembly plans for a single product is represented using an
And/Or graph. This representation embodies some of the constraints involved in the
planning problem, such as precedence of tasks, and the constraints due to the
completion of a correct assembly plan. In order to include all the different constraints
of the problem, the And/Or graph representation is extended, so that links between
nodes corresponding to assembly tasks are added, taking into account the resource
constraints. This representation allows a direct mapping of the problem to a
Constraint Satisfaction Problem (CSP), in order to be solved using a CP approach.

The rest of the paper is organised as follows: Section 2 describes the problem of
selecting and sequencing of assembly tasks, and Section 3 states the planning model
defined to solve the problem. Section 4 shows the CSP model for the problem, and the
extended And/Or graph illustrating the set of all constraints of the problem. Next
section presents the CP-based method used for solving the problem, and some of the
results obtained. Finally, some remarks are made in the concluding section.

Fig. 1. And/Or for the product ABCDE

2 Assembly Sequence Planning

Assembly planning is a very important problem in the manufacturing of products. It
involves the identification, selection and sequencing of assembly operations, specified
by their effects on the parts. The identification of assembly operations has been
tackled by analyzing the product structure [5] [6]. The identification of assembly
operations usually leads to the set of all feasible assembly plans. The number of them
grows exponentially with the number of parts, and depends on other factors, such as

how the single parts are interconnected within the whole assembly. In fact, this
problem has been proved to be NP-complete [7].

An optimum assembly plan is now sought, selected from the set of all feasible
assembly plans. Most approaches used for choosing an optimal one employ different
kind of rules in order to eliminate assembly plans including difficult tasks or awkward
intermediate subassemblies [8] [9]. The aim of this work is to obtain an optimal
assembly plan, supposing its execution in a multi-robot system. To meet this
objective, a previous estimation of durations and resources for tasks is needed.

And/Or graphs have been used to represent the set of all feasible assembly plans
for a product [10]. In this representation, the Or nodes correspond to sub-assemblies,
the top node corresponds to the whole assembly, and the leaf nodes correspond to the
individual parts. Each And node corresponds to the assembly task joining the sub-
assemblies of its two final nodes producing the sub-assembly of its initial node. In the
And/Or graph representation of assembly plans, an 4nd/Or path whose top node is the
And/Or graph top node and whose leaf nodes are the And/Or graph leaf nodes is
associated to an assembly plan, and is referred to as an assembly tree. An important
advantage of this representation, used in this work, is that the And/Or graph shows the
independence of assembly tasks that can be executed in parallel. Figure 1 shows an
example of this representation.

3 The Planning Model

The problem is focused on searching an optimal assembly sequence, an ordering of an
assembly plan (one of the And/Or trees of the And/Or graph). This work starts from a
previous estimation for the times and resources (robots, tools, fixtures...) needed for
each assembly task in the And/Or graph. Another factor considered here, is the time
necessary for changing the tools in the robots, which is of the same order as the
execution time of the assembly tasks and therefore cannot be disregarded as in Parts
Manufacturing. A.,(M, C, C") will denote the time needed for installing the tool C in
the robot (machine) M if the tool C’" was previously installed. Notice that any change
of configuration in the robots can be modeled in this way. Because of that, it will be
used in the rest of the paper the more general terms machines and configurations.

Another issue is the transportation of parts and sub-assemblies, that could affect
the total assembly time. Ideally, it would be supposed a well-dimensioned system,
with a perfect planning when executing the assembly plan, so that, when a part would
be required in a robot for executing an assembly operation, it will be present there.
But the same cannot be guaranteed for an intermediate subassembly, because it could
be built in a robot and required immediately in another one to form another
subassembly. A,,,.(S4, M, M") will denote the time needed for transporting the
subassembly S4 from machine M to machine M.

4 The CSP Model

The And/Or graph representation of assembly plans embodies the precedence
constraints between assembly tasks, and the constraints related to the construction of a

correct assembly plan, i.e. a tree of the And/Or graph. An extension of this
representation can be defined so that it includes all the constraints involved in the
assembly planning problem described in Section 3, adding those constraints due to the
use of resources, as it is shown in Figure 2. This section describes this extended
representation and the associated CSP model.

Fo o
O)
]g[®)
8)
O==0 ®

Fig. 2. The extended And/Or graph for the product ABCDE

Each node of the And/Or graph is associated to a set of variables or attributes. The
previous section indicated those which could be considered constants: for each
assembly task 7 (And node), its duration, dur(T), the machine used, m(7), and the
necessary configuration on it, ¢(7); for the sub-assemblies (Or nodes), the delays
related to the transportations between machines. Moreover, different temporal
variables are considered for the two types of nodes: for each task 7, its starting time,
t(T), and ending time, t(7); for each sub-assembly SA4, the time it was assembled,
tor(SA).

On the other hand, each task may not be present in the final solution. In order to
build a correct solution, all the tasks selected must belong to one of the possible trees
of the And/Or graph. Moreover, depending on the execution of some tasks or others, it
will be formed some intermediate sub-assemblies and not another ones. So, an
additional boolean variable is defined for each node in the And/Or graph, indicating if
the node is selected for the solution, denoting as s(7) and s(SA) for a generic task 7 and
a generic sub-assembly SA4 respectively.

In addition, since a sub-assembly car be built in different machines, depending on
the selected task for its assembly, a new variable is defined in the model for the Or
nodes, m(SA) denoting the machine used for the assembly of SA.

All those variables form part of the CSP model proposed. Table 1 shows some
indicative examples of the different types of constraints between the variables,
corresponding to the extended And/Or graph of Figure 2. Constraints of type (1)

related the selection of tasks with that of sub-assemblies, expressed through the XOR
operator, since one and only one alternative task can be selected to build a sub-
assembly, if that sub-assembly takes part in the solution. Moreover, they define the
constraints associated with the machine and assembly time of Or nodes, related to the
tasks that can be selected. A special case is for the complete product and for the
individual parts, which always will be part of the solution, so that the corresponding
boolean variables s are frue. Notice that, for the same reason, the specification of #op
for the individual parts is simpler (equals to zero).

Table 1. Set of constraints for the And/Or graph from Figure 2

Typ Constraints

s(4BcpE) = s(4) = 5(B) = s(c) = s(p) = s(E) = true

s(4scpE) = (s(T,) XOR s(T,))

s(T) = (m(ABCDE) =M, Aty (4BCDE) =1, (Tl))

s(T,) = (m(ABCDE) =M, Aty (4BCDE) =1, (Tz))

s(4cp) = (s(T,) XOR s(T,)) ~ —s(aBcp) = (—s(Ty) A—s(Ty))
s(Ty) = (m(aBcp) = M, Aty (a8cD) =1 ,(T3))

(M

to;e (4) =15 (B) = tpr (C) =t (D) =1 (E) =0
S(T) = 1, (1) = 1,(T) + dur(T)

@

s(T,) = tf(]IO) =t,(T},) +dur(T},)

s(T) = (s(ABCD) At (T) 2t (4BcD) + A, (4BCD, m(4BCD), M,))
s(1)) = 1,(T) 2 15z (E)

@
$(T) = 1,(T3) 2 1, (8)

$(T) = 1,(T,) 2 1, (£)

(s(T)/\s(T)):>t(T)>t T)+A,,M,,C,,C,)
(s(T,) AS(T)) = 1,(T) 21, (T,) +A,,, (M, C,.C)
(s(T)/\s(T))Dti(T})th(T7)+Al,h,(M2,C3,C4)
()
(
(

4)

ST AS(T) = (L) 21, (T)+A,,(M,.C,,C,)
ST AST)) = (4T 21, () v i(T) 21,(Ty))

S(T)/\S(];o)) ((t[(T7)ZI/(7;0)+AC,”(Mz,C4,C3))\/(t[(7;0)21‘/.(7"7)+Achl(MZ,Q,C4)))
minimize ¢, (4BCDE)

cht

©)

The constraints of type (2) consider the durations of tasks.

The constraints of type (3) include the precedence between start times of And
nodes and assembly times of Or nodes, and the possible delays due to the
transportation of sub-assemblies between different machines. Moreover, they related

the selection of sub-assemblies to that of the tasks using them to build another bigger
one.

The constraints of type (4) are due to the delay needed for a change of
configuration in a machine between the executions of tasks using the same machine
with precedence constraints among them. Notice that it is only needed relating each
task to its closest predecessor one in the And/Or graph that uses the same machine.
Furthermore, when both tasks use the same configuration, the resulting constraint is
superfluous and can be eliminated. A new type of link between And nodes has been
added in order to represent this kind of constraints in the extended And/Or graph of
Figure 2.

Finally, the constraints of type (5) express the two possible orders when executing
two tasks with no precedence constraints among them that use the same machine,
maybe with a change of configuration in the machine. Also, a new type of link
between And nodes has been added in order to represent this kind of constraints in the
extended And/Or graph of Figure 2.

Notice that the combinatorial character of the problem is due to the constraints of
types (1) and (5), corresponding to the selection of alternative tasks, and to the use of
shared resources from tasks that are not related through precedence constraints.

5 Solving with Constraint Programming

Usually, a combined method of searching (instantiating variables) and constraint
propagation (reducing the domains of variables) is used in CP for solving a CSP. Both
approaches can ignore the specific problem to be solved, so that a non-deterministic
method can be used. However, the algorithm becomes more efficient if a good
knowledge of the problem is put in both the search and constraint propagation methods.

The algorithm used here is based on backtracking. It maintains a set of tasks, all
belonging to the same tree of the And/Or graph, the constraints related to these tasks,
and a list of Or nodes to expand. The algorithm makes two different types of
expansion steps when exploring the And/Or graph, one for the Or nodes and the other
for the And nodes. The expansion of an Or node results in the selection of an
alternative task, that is created and its constraints posted (and removed when
backtracking) dynamically. The expansion of an And node results in adding the Or
nodes to the open list. When the algorithm has completed a tree of tasks, i.e. the list of
Or nodes is empty, it uses an edge-finder propagator to increase propagation,
provided that there are no more tasks that can use the resources.

The algorithm has been implemented using ILOG Solver and Scheduler [11], a
C++ library for Constraint Programming and scheduling problems. Table 2 shows the
results obtained for a hypothetical product of 30 parts, whose And/Or graph contains
396 Or nodes and 764 And nodes. There are about 10*! possible linear arrangements
of the tasks forming a legal solution. The results come from 11 different combinations
of durations and resources for the tasks, for a system with 2 machines and 2 possible
configurations for each machine. The problems were tested without using a specific
method for selecting the next And and Or nodes from the alternatives in the algorithm,
denoted as “- heuristic, and using a heuristic based on the number of trees below the
node. For the selection of the Or node, the node with the least number of trees was

selected, so that propagation of precedence constraints could have a better effect. For
the And node, that of the greatest number of trees, so that there are more alternatives
where to find the optimal solution. The table shows, for each combination of
heuristics, how many problems were solved in less time than others, the average time,
and the number of problems that the time used by the algorithm deviated more than
the double from the average time.

Table 2. Comparative results when using heuristics in the exploration of the And/Or graph

Heuristic (Or / And) # Best result Average #2-Ave

-/- 0 (0.0%) 25823 1 (9.1%)
-/ max #trees 0 (0.0%) 25336 2 (18.2%)

min #trees / - 4 (36.4%) 24999 1 (9.1%)

min #trees / max #trees 7 (63.6%) 244.75 2 (18.2%)

6 Conclusions

A CSP model has been presented for the selection of optimal assembly plans in a
multi-robot system. The different factors that could be an influence in minimizing the
total assembly time in a generic assembly system have been taken into account.

The CSP is represented through an extended And/Or graph, so that all the different
constraints of the problem are symbolized through different types of links between the
nodes of the graph, whose attributes are the variables of the CSP. Some results from a
CP-based algorithm are shown in the paper.

References

[1] Caseau, Y., Laburthe, F.: Improving Branch and Bound for Jobshop Scheduling
with Constraint Propagation. Proceedings of the 8th Franco-Japanese 4th
Franco-Chinese Conference CCS'95 (1995)

[2] Esquirol, P., Fargier, H., Lopez, P., Schiex, T.: Constraint programming.
Belgian Journal of Operations Research, Statistics and Computer Sciences
(1996)

[3] Beck, J.C., Fox, M.S.: Constraint-directed techniques for scheduling alternative
activities. Artificial Intelligence, 121 (2000) 211-250

[4] Del Valle, C., Camacho, E.F.: Automatic Assembly Task Assignment for a
Multirobot Environment. Control Eng. Practice, Vol. 4, No. 7 (1996) 915-921

[5] Homem de Mello, L.S., Sanderson, A.C.: A Correct and Complete Algorithm
for the Generation of Mechanical Assembly Sequences. IEEE Trans. Robotic
and Automation, Vol 7 (2) (1991) 228-240

[6] Calton, T.L.: Advancing design-for-assembly. The next generation in assembly
planning. Proc. 1999 IEEE Int. Symp. Assembly and Task Planning (1999) 57-
62

[11]

Wilson, R.H., Kavraki, L., Lozano-Pérez, T., Latombe, J.C.: Two-Handed As-
sembly Sequencing. Int. Journal Robotic Research. Vol. 14 (1995) 335-350
Homem de Mello, L.S., Lee, S. (eds.): Computer-Aided Mechanical Assembly
Planning. Kluwer Academic Publishers (1991)

Goldwasser, M.H., Motwani, R.: Complexity measures for assembly sequences.
Int. Journal of Computational Geometry and Applications, 9 (1999) 371-418
Homem de Mello, L.S., Sanderson, A.C.: And/Or Graph Representation of
Assembly Plans. IEEE Trans. Robotics Automation. Vol. 6, No. 2 (1990) 188-
199

ILOG, France, http://www.ilog.fr/

	On Selecting and Scheduling Assembly Plans Using Constraint Programming
	Introduction
	Assembly Sequence Planning
	The Planning Model
	The CSP Model
	Solving with Constraint Programming
	Conclusions

