12 research outputs found

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation

    Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems

    No full text
    Phase change materials (PCM) possess a great capacity of accumulation of energy in their temperature of fusion thanks to the latent heat. These materials are used in applications where it is necessary to store energy due to the temporary phase shift between the offer and demand of thermal energy. Thus, possible applications are the solar systems as well as the recovery of residual heat for its posterior use in other processes. In spite of this great potential, the practical feasibility of latent heat storage with PCM is still limited, mainly due to a rather low thermal conductivity. This low conductivity implies small heat transfer coefficients and, consequently, thermal cycles are slow and not suitable for most of the potential applications. This work investigates experimentally the heat transfer process during melting (charge) and solidification (discharge) of five small heat exchangers working as latent heat thermal storage systems. Commercial paraffin RT35 is used as PCM filling one side of the heat exchanger and water circulates through the other side as heat transfer fluid. Average thermal power values are evaluated for various operating conditions and compared among the heat exchangers studied. When the comparison is done for average power per unit area and per average temperature gradient, results show that the double pipe heat exchanger with the PCM embedded in a graphite matrix (DPHX-PCM matrix) is the one with higher values, in the range of 700-800 W/m2-K, which are one order of magnitude higher than the ones presented by the second best. On the other hand, the compact heat exchanger (CompHX-PCM) is by large the one with the highest average thermal power (above 1 kW), as it has the highest ratio of heat transfer area to external volume. © 2009 Elsevier Ltd. All rights reserved.ENE2005-08256-C02-01/ALT, 2005-SGR-00324Marc Medrano would like to thank the Spanish Ministry of Education and Science for his Ramon y Cajal research appointment. Metin Yilmaz would like to thank his Erasmus fellowship. The work was partially funded with the Project ENE2005-08256-C02-01/ALT and the Project 2005-SGR-00324

    Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties

    No full text
    The use of thermal energy storage by phase change materials (PCM) is increasing in interest for building applications. For the deployment of the technology, appropriate characterization of PCM and hybrid PCM is essential, but it is not always possible to carry it out with conventional equipment, mainly due to the sample size. This paper shows equipment developed in different research centers and universities to analyze thermophysical properties, such as specific heat, latent heat and melting temperature, and thermal conductivity and diffusivity of PCM and hybrid PCM materials. © 2014 Elsevier Ltd.ENE2011-28269-C03-01, ENE2011-22722, ENE2011-28269-C03-02 European Commission 110M032 Qatar Foundation: BES-2012–051861 COST TU0802The work is partially funded by the European Union (COST Action COST TU0802 ), the Spanish government ( ENE2011-28269-C03-01 , ENE2011-28269-C03-02 and ENE2011-22722 ), TUBITAK (project 110M032 ), and by Qatar National Foundation through the NPRP No.: 4–465-2–173 . The authors would like to thank the Catalan Government for the quality accreditation given to the research group GREA ( 2014 SGR 123 ) and their research group DIOPMA (2014 SGR 1543), both in Spain. Laia Miró would like to thank the Spanish Government for her research fellowship ( BES-2012–051861 )

    Unconventional experimental technologies available for phase change materials (PCM) characterization. Pt.1. Thermophysical properties

    No full text
    The use of thermal energy storage by phase change materials (PCM) is increasing in interest for building applications. For the deployment of the technology, appropriate characterization of PCM and hybrid PCM is essential, but it is not always possible to carry it out with conventional equipment, mainly due to the sample size. This paper shows equipment developed in different research centers and universities to analyze thermophysical properties, such as specific heat, latent heat and melting temperature, and thermal conductivity and diffusivity of PCM and hybrid PCM materials

    Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties

    No full text
    The use of thermal energy storage by phase change materials (PCM) is increasing in interest for building applications. For the deployment of the technology, appropriate characterization of PCM and hybrid PCM is essential, but it is not always possible to carry it out with conventional equipment, mainly due to the sample size. This paper shows equipment developed in different research centers and universities to analyze thermophysical properties, such as specific heat, latent heat and melting temperature, and thermal conductivity and diffusivity of PCM and hybrid PCM materials.Scopu

    Comparação entre dois métodos para avaliação da infestação pelo complexo broca-podridões em cultivares de cana-de-açúcar

    No full text
    O presente trabalho foi desenvolvido na Estação Experimental de Piracicaba, SP, utilizando-se seis cultivares de cana-de-açúcar, com o objetivo de comparar a porcentagem de colmos infestados e a intensidade de infestação como técnicas para avaliar o ataque pelo complexo broca-podridões. As cultivares foram plantadas em abril de 1985, sendo as avaliações realizadas nos meses de maio, julho e setembro do ano seguinte. Com base nos resultados obtidos, constatou-se que não há diferenças entre as porcentagens de colmos infestados externa e internamente pelo complexo broca-podridões. A intensidade de infestação interna foi maior que a externa, verificando-se entre estes parâmetros uma correlação linear positiva e altamente significativa. Nem sempre se constatou correlação significativa entre porcentagem de colmos infestados e intensidade de infestação. A maior porcentagem de internódios infestados foi observada na região basal do colmo, e a menor na apical.This research was conducted at the Experimental Station of Piracicaba, São Paulo, Brazil. Six sugarcane cultivars were studied with the main purpose of comparing the percentage of infested stalks and the intensity of infestation by the borer - rot complex. The cultivars were planted in April of 1985 and the evaluations were made in May, July and September of 1986. The results indicated that there were no differences between the internal and external percentages of infested stalks. The internal and external intensities of infestation presented a positive and highly significant linear correlation. On the other hand, a significant correlation between the percentage of infested stalks and the intensity of infestation was not always found. The highest percentage of infested internodes was observed at the basal region of the stalk and the lowest at the apical one

    Changes of Physical Activity and Ultra-Processed Food Consumption in Adolescents from Different Countries during Covid-19 Pandemic: An Observational Study

    Get PDF
    Aim: to describe physical activity and ultra-processed foods consumption, their changes and sociodemographic predictors among adolescents from countries in Europe (Italy and Spain) and Latin America (Brazil, Chile, and Colombia) during the SARS-CoV-2-pandemic period. Methods: Cross-sectional study via web survey. International Physical Activity Questionnaire (IPAQ) and weekly ultra-processed food consumption data were used. To compare the frequencies of physical activity status with sociodemographic variables, a multinomial logistic and a multiple logistic regression for habitual ultra-processed foods was performed. In final models, p < 0.05 was considered significant. Results: Sample of 726 adolescents, mostly females (59.6%) aged 16–19 years old (54.3%). Adolescents from Latin America presented odds ratio (OR) 2.98 (CI 95% 1.80–4.94) of being inactive and those whose mothers had higher level of education were less active during lockdown [OR 0.40 (CI 95% 0.20–0.84)]. The habitual ultra-processed consumption was also high during this period in all countries, and more prevalent in Latin America. Conclusion: A higher prevalence of inactivity was observed in this population, but reductions of physical activity and habitual ultra-processed consumption during the pandemic were more pronounced in Latin America. Our findings reinforce the importance of promoting a healthy lifestyle, i.e., exercise and diet, during periods of social isolation
    corecore